David Lydall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8367471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature, 1996, 383, 840-843.	13.7	334
2	EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes and Development, 2002, 16, 1919-1933.	2.7	277
3	The identification of a second cell cycle control on the HO promoter in yeast: Cell cycle regulation of SWI5 nuclear entry. Cell, 1990, 62, 631-647.	13.5	222
4	Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres. EMBO Journal, 2008, 27, 1502-12.	3.5	159
5	A Genome-Wide Screen Identifies the Evolutionarily Conserved KEOPS Complex as a Telomere Regulator. Cell, 2006, 124, 1155-1168.	13.5	158
6	Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response. EMBO Journal, 2008, 27, 2400-2410.	3.5	151
7	Exo1 and Rad24 Differentially Regulate Generation of ssDNA at Telomeres of Saccharomyces cerevisiae cdc13-1 Mutants. Genetics, 2004, 168, 103-115.	1.2	107
8	Telomerase- and recombination-independent immortalization of budding yeast. Genes and Development, 2004, 18, 2663-2675.	2.7	91
9	<i>NDD1</i> , a High-Dosage Suppressor of <i>cdc28-1N</i> , Is Essential for Expression of a Subset of Late-S-Phase-Specific Genes in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1999, 19, 3312-3327.	1.1	88
10	Pif1- and Exo1-dependent nucleases coordinate checkpoint activation following telomere uncapping. EMBO Journal, 2010, 29, 4020-4034.	3.5	68
11	Hiding at the ends of yeast chromosomes: telomeres, nucleases and checkpoint pathways. Journal of Cell Science, 2003, 116, 4057-4065.	1.2	67
12	From DNA damage to cell cycle arrest and suicide: a budding yeast perspective. Current Opinion in Genetics and Development, 1996, 6, 4-11.	1.5	66
13	Quantitative Fitness Analysis Shows That NMD Proteins and Many Other Protein Complexes Suppress or Enhance Distinct Telomere Cap Defects. PLoS Genetics, 2011, 7, e1001362.	1.5	65
14	Mec1 and Rad53 Inhibit Formation of Single-Stranded DNA at Telomeres of Saccharomyces cerevisiae cdc13-1 Mutants. Genetics, 2004, 166, 753-764.	1.2	64
15	A domain of Rad9 specifically required for activation of Chk1 in budding yeast. Journal of Cell Science, 2004, 117, 601-608.	1.2	63
16	EXO1 Plays a Role in Generating Type I and Type II Survivors in Budding Yeast. Genetics, 2004, 166, 1641-1649.	1.2	61
17	Similarities and differences between "uncapped―telomeres and DNA double-strand breaks. Chromosoma, 2012, 121, 117-130.	1.0	53
18	Taming the tiger by the tail: modulation of DNA damage responses by telomeres. EMBO Journal, 2009, 28, 2174-2187.	3.5	52

DAVID LYDALL

#	Article	IF	CITATIONS
19	The 9-1-1 checkpoint clamp coordinates resection at DNA double strand breaks. Nucleic Acids Research, 2015, 43, 5017-5032.	6.5	50
20	The 9-1-1 checkpoint clamp stimulates DNA resection by Dna2-Sgs1 and Exo1. Nucleic Acids Research, 2014, 42, 10516-10528.	6.5	46
21	Pho4 mediates phosphate acquisition in <i>Candida albicans</i> and is vital for stress resistance and metal homeostasis. Molecular Biology of the Cell, 2016, 27, 2784-2801.	0.9	46
22	Linear chromosome maintenance in the absence of essential telomere-capping proteins. Nature Cell Biology, 2006, 8, 734-740.	4.6	39
23	Survival and Growth of Yeast without Telomere Capping by Cdc13 in the Absence of Sgs1, Exo1, and Rad9. PLoS Genetics, 2010, 6, e1001072.	1.5	37
24	MRX protects telomeric DNA at uncapped telomeres of budding yeast cdc13-1 mutants. DNA Repair, 2006, 5, 840-851.	1.3	29
25	The Yeast Copper Response Is Regulated by DNA Damage. Molecular and Cellular Biology, 2013, 33, 4041-4050.	1.1	29
26	Telomere Maintenance and Survival in Saccharomyces cerevisiae in the Absence of Telomerase and RAD52. Genetics, 2009, 182, 671-684.	1.2	25
27	Chromatin and the DNA damage response. DNA Repair, 2005, 4, 1195-1207.	1.3	24
28	Use of cdc13-1-induced DNA damage to study effects of checkpoint genes on DNA damage processing. Methods in Enzymology, 1997, 283, 410-424.	0.4	21
29	The contribution of non-essential <i>Schizosaccharomyces pombe</i> genes to fitness in response to altered nutrient supply and target of rapamycin activity. Open Biology, 2018, 8, 180015.	1.5	21
30	Mrc1 protects uncapped budding yeast telomeres from exonuclease EXO1. DNA Repair, 2007, 6, 1607-1617.	1.3	20
31	A genome wide analysis of the response to uncapped telomeres in budding yeast reveals a novel role for the NAD+ biosynthetic gene BNA2 in chromosome end protection. Genome Biology, 2008, 9, R146.	13.9	19
32	Interplay between Nonsense-Mediated mRNA Decay and DNA Damage Response Pathways Reveals that Stn1 and Ten1 Are the Key CST Telomere-Cap Components. Cell Reports, 2014, 7, 1259-1269.	2.9	19
33	EXO1 Plays a Role in Generating Type I and Type II Survivors in Budding Yeast. Genetics, 2004, 166, 1641-1649.	1.2	19
34	Mec1 and Rad53 Inhibit Formation of Single-Stranded DNA at Telomeres of <i>Saccharomyces cerevisiae cdc13-1</i> Mutants. Genetics, 2004, 166, 753-764.	1.2	17
35	Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases α, δ, and ε in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2015, 5, 2187-2197.	0.8	16
36	Paf1 and Ctr9, core components of the PAF1 complex, maintain low levels of telomeric repeat containing RNA. Nucleic Acids Research, 2018, 46, 621-634.	6.5	16

DAVID LYDALL

#	Article	IF	CITATIONS
37	Detecting Repair Intermediates In Vivo: Effects of DNA Damage Response Genes on Singleâ€Stranded DNA Accumulation at Uncapped Telomeres in Budding Yeast. Methods in Enzymology, 2006, 409, 285-300.	0.4	15
38	Pentose Phosphate Pathway Function Affects Tolerance to the G-Quadruplex Binder TMPyP4. PLoS ONE, 2013, 8, e66242.	1.1	15
39	The Telomere Binding Protein Cdc13 and the Single-Stranded DNA Binding Protein RPA Protect Telomeric DNA from Resection by Exonucleases. Journal of Molecular Biology, 2015, 427, 3023-3030.	2.0	13
40	Rif1 and Exo1 regulate the genomic instability following telomere losses. Aging Cell, 2016, 15, 553-562.	3.0	13
41	Overlapping open reading frames strongly reduce human and yeast STN1 gene expression and affect telomere function. PLoS Genetics, 2018, 14, e1007523.	1.5	13
42	A Critical Role for Dna2 at Unwound Telomeres. Genetics, 2018, 209, 129-141.	1.2	12
43	Quantitative Amplification of Single-Stranded DNA. Methods in Molecular Biology, 2012, 920, 323-339.	0.4	11
44	The PAL-Mechanism of Chromosome Maintenance: Causes and Consequences. Cell Cycle, 2005, 4, 747-751.	1.3	10
45	Simple, Non-radioactive Measurement of Single-Stranded DNA at Telomeric, Sub-telomeric, and Genomic Loci in Budding Yeast. Methods in Molecular Biology, 2012, 920, 341-348.	0.4	8
46	Costs, benefits and redundant mechanisms of adaption to chronic low-dose stress in yeast. Cell Cycle, 2016, 15, 2732-2741.	1.3	8
47	Systematic Analysis of the DNA Damage Response Network in Telomere Defective Budding Yeast. G3: Genes, Genomes, Genetics, 2017, 7, 2375-2389.	0.8	6
48	A Functional Link Between Bir1 and the <i>Saccharomyces cerevisiae</i> Ctf19 Kinetochore Complex Revealed Through Quantitative Fitness Analysis. G3: Genes, Genomes, Genetics, 2017, 7, 3203-3215.	0.8	5
49	Vps74 Connects the Golgi Apparatus and Telomeres in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2018, 8, 1807-1816.	0.8	5
50	Quantitative Fitness Analysis Identifies exo1â^† and Other Suppressors or Enhancers of Telomere Defects in Schizosaccharomyces pombe. PLoS ONE, 2015, 10, e0132240.	1.1	4
51	Cis and trans interactions between genes encoding PAF1 complex and ESCRT machinery components in yeast. Current Genetics, 2018, 64, 1105-1116.	0.8	3
52	Telomere Replication: Mre11 Leads the Way. Molecular Cell, 2010, 38, 777-779.	4.5	1
53	Genome-Wide Quantitative Fitness Analysis (QFA) of Yeast Cultures. Methods in Molecular Biology, 2018, 1672, 575-597.	0.4	1