AbdAllah Attaf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8367415/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization and photocatalytic activity of different molar ratios of TiO2 thin films prepared by Sol-Gel process. Main Group Chemistry, 2023, 22, 55-65.	0.8	1
2	The effect of ultrasonic wave amplitude on the physical properties of zinc oxide (ZnO) deposited by ultrasonic spray method. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 275, 115525.	3.5	6
3	Dependence of the Physical Properties of Titanium Dioxide (TiO ₂) Thin Films Grown by Sol-Gel (Spin-Coating) Process on Thickness. ECS Journal of Solid State Science and Technology, 2022, 11, 023003.	1.8	13
4	Br doping effect on structural, optical and electrical properties of ZnS thin films deposited by ultrasonic spray. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 268, 115135.	3.5	13
5	Film thickness effect on structural, optical and electrical properties of indium oxide (In2O3) thin films grown via sol-gel method. Main Group Chemistry, 2021, , 1-15.	0.8	1
6	Physical properties of Pb doped ZnS thin films prepared by ultrasonic spray technique. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126199.	2.1	14
7	Physical properties of Al-doped ZnS thin filmsÂprepared byÂultrasonic spray technique. Surfaces and Interfaces, 2020, 21, 100645.	3.0	21
8	Controlling of c-axis position of ZnO nano-crystalline films deposited at various substrate temperature by ultrasonic spray method. Surfaces and Interfaces, 2020, 21, 100698.	3.0	2
9	Effects of lattice mismatches in In2O3/substrate structures on the structural, morphological and electrical properties of In2O3 films. Surfaces and Interfaces, 2020, 20, 100579.	3.0	2
10	Influence of Ti doping on SnO2 thin films properties prepared by ultrasonic spray technique. Surfaces and Interfaces, 2020, 18, 100449.	3.0	6
11	Investigation of F doped SnO2 thin films properties deposited via ultrasonic spray technique for several applications. Surfaces and Interfaces, 2019, 15, 244-249.	3.0	20
12	Structural, optical, morphological and electrical properties of indium oxide thin films prepared by sol gel spin coating process. Surfaces and Interfaces, 2019, 14, 158-165.	3.0	42
13	Investigation of structural, optical and electrical properties of ZnS thin films prepared by ultrasonic spray technique for photovoltaic applications. Optik, 2018, 154, 286-293.	2.9	29
14	Solution flow rate influence on ZnS thin films properties grown by ultrasonic spray for optoelectronic application. Journal of Semiconductors, 2018, 39, 093001.	3.7	15
15	Structural, optical and electrical properties of zinc oxide thin films deposited by sol-gel spin coating technique. Optik, 2017, 134, 53-59.	2.9	28
16	On tuning the preferential crystalline orientation of spray pyrolysis deposited indium oxide thin films. Thin Solid Films, 2017, 625, 177-179.	1.8	9
17	The synthesis, characterization and phase stability of tin sulfides (SnS2, SnS andÂSn2S3) films deposited byÂultrasonicÂspray. Main Group Chemistry, 2016, 15, 231-242.	0.8	6
18	Influence of annealing temperature on In2O3 properties grown by an ultrasonic spray CVD process. Optik, 2016, 127, 6329-6333.	2.9	24

ABDALLAH ATTAF

#	Article	IF	CITATIONS
19	Structural, morphological, optical, and electrical properties of In2O3 nanostructured thin films. Optik, 2016, 127, 7319-7325.	2.9	14
20	Effect of solution flow on the properties of tin dioxide SnO2 thin films deposited by spray pyrolysis technique. Optik, 2016, 127, 11055-11062.	2.9	16
21	Influence of solution flow rate on the properties of SnS2 films prepared by ultrasonic spray. Optik, 2016, 127, 4043-4046.	2.9	28
22	Modulation of Physical Properties of Sprayed ZnO Thin Films by Substrate Temperature for Optical Applications. International Journal of Nanoscience, 2016, 15, 1650007.	0.7	2
23	Influence of the solution flow rate on the properties of zinc oxide (ZnO) nano-crystalline films synthesized by ultrasonic spray process. Optik, 2016, 127, 3005-3008.	2.9	11
24	Structural, morphological, optical and electrical characterization of spray ultrasonic deposited SnS2 thin film. Optik, 2016, 127, 2266-2270.	2.9	9
25	The synthesis and characterization of sprayed ZnO thin films: As a function of solution molarity. Main Group Chemistry, 2015, 15, 57-66.	0.8	9
26	Properties of n-type SnO ₂ semiconductor prepared by spray ultrasonic technique for photovoltaic applications. Journal of Semiconductors, 2015, 36, 123002.	3.7	36
27	Correlation between the structural, morphological, optical, and electrical properties of In ₂ O ₃ thin films obtained by an ultrasonic spray CVD process. Journal of Semiconductors, 2015, 36, 082002.	3.7	31
28	ZnO thin films deposition by spray pyrolysis: Influence of precursor solution properties. Current Applied Physics, 2012, 12, 1283-1287.	2.4	140