Chunlei Zhu

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/8367099/publications.pdf
Version: 2024-02-01

An Exceptional Broad-Spectrum Nanobiocide for Multimodal and Synergistic Inactivation of1 An Exceptional Broad-Spectrum Nanobiocide for Multimoda4.621
Bringing Inherent Charges into Aggregation-Induced Emission Research. Accounts of Chemical Research, 2022, 55, 197-208. 7.6 40
2Polarity-Sensitive Fluorescent Probe for Reflecting the Packing Degree of Bacterial Membrane Lipids.3.2Analytical Chemistry, 2022, 94, 3303-3312.
Bridging Dâ€"A type photosensitizers with the azo group to boost intersystem crossing for efficient $4 \quad \begin{aligned} & \text { Bridging Dâé"A type photosensitizers with the azo group to boost } \\ & \text { photodynamic therapy. Chemical Science, 2022, 13, 4139-4149. }\end{aligned}$ 3.7 18 $2.2 \quad 17$ photodynamic therapy outcome. Chemical Communications, 2022, 58, 7058-7061.6 Transporting mitochondrion-targeting photosensitizers into cancer cells by low-density lipoproteins2.828
for fluorescence-feedback photodynamic therapy. Nanoscale, 2021, 13, 1195-1205.-28
7 Bringing naturally-occurring saturated fatty acids into biomedical research. Journal of Materials 2.9
Chemistry B, 2021, 9, 6973-6987.132.888 Self-assembly of virulent amyloid-derived peptides into nanoantibacterials. Nanoscale, 2021, 13,9864-9872.
9 Augmenting Tendonâ€toâ€Bone Repair with Functionally Graded Scaffolds. Advanced Healthcare 3.9
Materials, 2021, 10, e2002269.34
11 Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning. Angewandte Chemie, 2021, 133, 19371-19380.
1.6 2
12 Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and
Biopatterning. Angewandte Chemie - International Edition, 2021, 60, 19222-19231.7.229
6.6 84A Sensitive and Reliable Organic Fluorescent Nanothermometer for Noninvasive Temperature Sensing.Journal of the American Chemical Society, 2021, 143, 14147-14157.Evaluation the binding of chelerythrine, a potentially harmful toxin, with bovine serum albumin. Food1.819and Chemical Toxicology, 2020, 135, 110933.Profiling the interaction of $\mathrm{Al}(\mathrm{III})$-GFLX complex, a potential pollution risk, with bovine serum1.818
albumin. Food and Chemical Toxicology, 2020, 136, 111058.7.3

Nearâ€infraredâ€ 19 riggered Release of Ca<sup $>2+</$ sup $>$ Ions for Potential Application in Combination
Cancer Therapy. Advanced Healthcare Materials, 2019,8 , e1801113.

Tissue Regeneration: Design and Fabrication of a Hierarchically Structured Scaffold for
20 Tendonâ€ॄoâ€Bone Repair (Adv. Mater. 16/2018). Advanced Materials, 2018, 30, 1870116.
11.1

15

Combination cancer treatment through photothermally controlled release of selenous acid from gold nanocages. Biomaterials, 2018, 178, 517-526.

General Method for Generating Circular Gradients of Active Proteins on Nanofiber Scaffolds Sought
22 for Wound Closure and Related Applications. ACS Applied Materials \& Interfaces, 2018, 10, 8536-8545.

Integration of Phaseâ€Change Materials with Electrospun Fibers for Promoting Neurite Outgrowth
under Controlled Release. Advanced Functional Materials, 2018, 28, 1705563.

Design and Fabrication of a Hierarchically Structured Scaffold for Tendonâ€屯oâ€Bone Repair. Advanced
Materials, 2018, 30, el707306.
11.182

25 Continuous processing of phase-change materials into uniform nanoparticles for
near-infrared-triggered drug release. Nanoscale, 2018, 10, 22312-22318.
2.8

29

Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS Applied Bio Materials, 2018, 1, 1768-1786.

Inverse Opal Scaffolds with Gradations in Mineral Content for Spatial Control of Osteogenesis.
Advanced Materials, 2018, 30, el706706.

Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared-I Emission
for Ultradeep Intravital Two-Photon Microscopy. ACS Nano, 2018, 12, 7936-7945.

Enhancing the Mechanical Properties of Electrospun Nanofiber Mats through Controllable Welding
at the Cross Points. Macromolecular Rapid Communications, 2017, 38, 1600723.

A Hybrid Nanomaterial for the Controlled Generation of Free Radicals and Oxidative Destruction of
Hypoxic Cancer Cells. Angewandte Chemie - International Edition, 2017, 56, 8801-8804.

A Hybrid Nanomaterial for the Controlled Generation of Free Radicals and Oxidative Destruction of
Hypoxic Cancer Cells. Angewandte Chemie, 2017, 129, 8927-8930.

R $\tilde{\mathrm{A}} 1 / 4$ cktitelbild: A Hybrid Nanomaterial for the Controlled Generation of Free Radicals and Oxidative
Destruction of Hypoxic Cancer Cells (Angew. Chem. 30/2017). Angewandte Chemie, 2017, 129, 9030-9030.
1.6

Differentiation of Bone Marrow Stem Cells into Schwann Cells for the Promotion of Neurite
33 Outgrowth on Electrospun Fibers. ACS Applied Materials \& Interfaces, 2017, 9, 12299-12310.
4.0

64

A Eutectic Mixture of Natural Fatty Acids Can Serve as the Gating Material for Nearâ€łnfraredâ€ariggered
Drug Release. Advanced Materials, 2017, 29, 1703702.
11.1

159

Biomimetics: reconstitution of low-density lipoprotein for targeted drug delivery and related
theranostic applications. Chemical Society Reviews, 2017, 46, 7668-7682.
18.7

42
37 Inverse Opal Scaffolds and Their Biomedical Applications. Advanced Materials, 2017, 29, 1701115.

38 Reconstitution of Lowâ€Density Lipoproteins with Fatty Acids for the Targeted Delivery of Drugs into

RÃ1/4cktitelbild: Micropatterning of the Ferroelectric Phase in a Poly(vinylidene difluoride) Film by
40 Plasmonic Heating with Gold Nanocages (Angew. Chem. 44/2016). Angewandte Chemie, 2016, 128,
1.60 14104-14104.

41	Micropatterning of the Ferroelectric Phase in a Poly(vinylidene difluoride) Film by Plasmonic Heating with Gold Nanocages. Angewandte Chemie, 2016, 128, 14032-14036.	1.6	11
42	Facile Synthesis of Silver Nanocubes with Sharp Corners and Edges in an Aqueous Solution. ACS Nano, 2016, 10, 9861-9870.	7.3	149
43	Micropatterning of the Ferroelectric Phase in a Poly(vinylidene difluoride) Film by Plasmonic Heating with Gold Nanocages. Angewandte Chemie - International Edition, 2016, 55, 13828-13832.	7.2	23
44	Surgical Sutures with Porous Sheaths for the Sustained Release of Growth Factors. Advanced Materials, 2016, 28, 4620-4624.	11.1	23
45	Synthesis of a new conjugated polymer for cell membrane imaging by using an intracellular targeting strategy. Polymer Chemistry, 2013, 4, 5212.	1.9	38
46	Conjugated Polymerâ€€oated Bacteria for Multimodal Intracellular and Extracellular Anticancer Activity. Advanced Materials, 2013, 25, 1203-1208.	11.1	73
47	Synthesis of a Bifunctional Fluorescent Polymer for Cell Imaging and Enzyme Detection. Macromolecular Chemistry and Physics, 2012, 213, 2486-2491.	1.1	9
48	Water-Soluble Conjugated Polymers for Imaging, Diagnosis, and Therapy. Chemical Reviews, 2012, 112, 4687-4735.	23.0	1,073
49	Composition formulae of ideal metallic glasses and their relevant eutectics established by a cluster-resonance model. Philosophical Magazine, 2011, 91, 2404-2418.	0.7	18

50 A potent fluorescent probe for the detection ofcellapoptosis. Chemical Communications, 2011, 47,
2.2

5524-5526.
46

Visual optical discrimination and detection of microbial pathogens based on diverse interactions of conjugated polyelectrolytes with cells. Journal of Materials Chemistry, 2011, 21, 7905.
6.7

38

Multifunctional Cationic Poly(<i>p</i>â€phenylene vinylene) Polyelectrolytes for Selective Recognition,
Imaging, and Killing of Bacteria Over Mammalian Cells. Advanced Materials, 2011, 23, 4805-4810.

53 for Selective Recognition, Imaging, and Killing of Bacteria Over Mammalian Cells (Adv. Mater. 41/2011).

