Chunlei Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8367099/publications.pdf Version: 2024-02-01

Снимі бі 7ни

#	Article	IF	CITATIONS
1	An Exceptional Broad-Spectrum Nanobiocide for Multimodal and Synergistic Inactivation of Drug-Resistant Bacteria. CCS Chemistry, 2022, 4, 272-285.	7.8	21
2	Bringing Inherent Charges into Aggregation-Induced Emission Research. Accounts of Chemical Research, 2022, 55, 197-208.	15.6	40
3	Polarity-Sensitive Fluorescent Probe for Reflecting the Packing Degree of Bacterial Membrane Lipids. Analytical Chemistry, 2022, 94, 3303-3312.	6.5	12
4	Bridging D–A type photosensitizers with the azo group to boost intersystem crossing for efficient photodynamic therapy. Chemical Science, 2022, 13, 4139-4149.	7.4	18
5	A receptor-targeting AIE photosensitizer for selective bacterial killing and real-time monitoring of photodynamic therapy outcome. Chemical Communications, 2022, 58, 7058-7061.	4.1	17
6	Transporting mitochondrion-targeting photosensitizers into cancer cells by low-density lipoproteins for fluorescence-feedback photodynamic therapy. Nanoscale, 2021, 13, 1195-1205.	5.6	28
7	Bringing naturally-occurring saturated fatty acids into biomedical research. Journal of Materials Chemistry B, 2021, 9, 6973-6987.	5.8	13
8	Self-assembly of virulent amyloid-derived peptides into nanoantibacterials. Nanoscale, 2021, 13, 9864-9872.	5.6	8
9	Augmenting Tendonâ€toâ€Bone Repair with Functionally Graded Scaffolds. Advanced Healthcare Materials, 2021, 10, e2002269.	7.6	34
10	Innenrücktitelbild: Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning (Angew. Chem. 35/2021). Angewandte Chemie, 2021, 133, 19643-19643.	2.0	0
11	Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning. Angewandte Chemie, 2021, 133, 19371-19380.	2.0	2
12	Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning. Angewandte Chemie - International Edition, 2021, 60, 19222-19231.	13.8	29
13	A Sensitive and Reliable Organic Fluorescent Nanothermometer for Noninvasive Temperature Sensing. Journal of the American Chemical Society, 2021, 143, 14147-14157.	13.7	84
14	Evaluation the binding of chelerythrine, a potentially harmful toxin, with bovine serum albumin. Food and Chemical Toxicology, 2020, 135, 110933.	3.6	19
15	Profiling the interaction of Al(III)-GFLX complex, a potential pollution risk, with bovine serum albumin. Food and Chemical Toxicology, 2020, 136, 111058.	3.6	18
16	Self-Reporting and Photothermally Enhanced Rapid Bacterial Killing on a Laser-Induced Graphene Mask. ACS Nano, 2020, 14, 12045-12053.	14.6	191
17	Promoting the Outgrowth of Neurites on Electrospun Microfibers by Functionalization with Electrosprayed Microparticles of Fatty Acids. Angewandte Chemie, 2019, 131, 3988-3991.	2.0	5
18	Promoting the Outgrowth of Neurites on Electrospun Microfibers by Functionalization with Electrosprayed Microparticles of Fatty Acids. Angewandte Chemie - International Edition, 2019, 58, 3948-3951.	13.8	32

CHUNLEI ZHU

#	Article	IF	CITATIONS
19	Nearâ€Infraredâ€Triggered Release of Ca ²⁺ Ions for Potential Application in Combination Cancer Therapy. Advanced Healthcare Materials, 2019, 8, e1801113.	7.6	39
20	Tissue Regeneration: Design and Fabrication of a Hierarchically Structured Scaffold for Tendonâ€ŧoâ€Bone Repair (Adv. Mater. 16/2018). Advanced Materials, 2018, 30, 1870116.	21.0	15
21	Combination cancer treatment through photothermally controlled release of selenous acid from gold nanocages. Biomaterials, 2018, 178, 517-526.	11.4	79
22	General Method for Generating Circular Gradients of Active Proteins on Nanofiber Scaffolds Sought for Wound Closure and Related Applications. ACS Applied Materials & Interfaces, 2018, 10, 8536-8545.	8.0	43
23	Integration of Phaseâ€Change Materials with Electrospun Fibers for Promoting Neurite Outgrowth under Controlled Release. Advanced Functional Materials, 2018, 28, 1705563.	14.9	82
24	Design and Fabrication of a Hierarchically Structured Scaffold for Tendonâ€ŧoâ€Bone Repair. Advanced Materials, 2018, 30, e1707306.	21.0	82
25	Continuous processing of phase-change materials into uniform nanoparticles for near-infrared-triggered drug release. Nanoscale, 2018, 10, 22312-22318.	5.6	29
26	Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS Applied Bio Materials, 2018, 1, 1768-1786.	4.6	219
27	Inverse Opal Scaffolds with Gradations in Mineral Content for Spatial Control of Osteogenesis. Advanced Materials, 2018, 30, e1706706.	21.0	30
28	Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared-I Emission for Ultradeep Intravital Two-Photon Microscopy. ACS Nano, 2018, 12, 7936-7945.	14.6	193
29	Enhancing the Mechanical Properties of Electrospun Nanofiber Mats through Controllable Welding at the Cross Points. Macromolecular Rapid Communications, 2017, 38, 1600723.	3.9	73
30	A Hybrid Nanomaterial for the Controlled Generation of Free Radicals and Oxidative Destruction of Hypoxic Cancer Cells. Angewandte Chemie - International Edition, 2017, 56, 8801-8804.	13.8	179
31	A Hybrid Nanomaterial for the Controlled Generation of Free Radicals and Oxidative Destruction of Hypoxic Cancer Cells. Angewandte Chemie, 2017, 129, 8927-8930.	2.0	19
32	Rücktitelbild: A Hybrid Nanomaterial for the Controlled Generation of Free Radicals and Oxidative Destruction of Hypoxic Cancer Cells (Angew. Chem. 30/2017). Angewandte Chemie, 2017, 129, 9030-9030.	2.0	0
33	Differentiation of Bone Marrow Stem Cells into Schwann Cells for the Promotion of Neurite Outgrowth on Electrospun Fibers. ACS Applied Materials & Interfaces, 2017, 9, 12299-12310.	8.0	64
34	A Eutectic Mixture of Natural Fatty Acids Can Serve as the Gating Material for Nearâ€Infraredâ€Triggered Drug Release. Advanced Materials, 2017, 29, 1703702.	21.0	159
35	Biomimetics: reconstitution of low-density lipoprotein for targeted drug delivery and related theranostic applications. Chemical Society Reviews, 2017, 46, 7668-7682.	38.1	42
36	Reconstitution of Lowâ€Density Lipoproteins with Fatty Acids for the Targeted Delivery of Drugs into Cancer Cells. Angewandte Chemie - International Edition, 2017, 56, 10399-10402.	13.8	39

CHUNLEI ZHU

#	Article	IF	CITATIONS
37	Inverse Opal Scaffolds and Their Biomedical Applications. Advanced Materials, 2017, 29, 1701115.	21.0	127
38	Reconstitution of Lowâ€Density Lipoproteins with Fatty Acids for the Targeted Delivery of Drugs into Cancer Cells. Angewandte Chemie, 2017, 129, 10535-10538.	2.0	6
39	Micropatterned Polymer Nanorod Forests and Their Use for Dual Drug Loading and Regulation of Cell Adhesion. ACS Applied Materials & Interfaces, 2016, 8, 34194-34197.	8.0	6
40	Rücktitelbild: Micropatterning of the Ferroelectric Phase in a Poly(vinylidene difluoride) Film by Plasmonic Heating with Gold Nanocages (Angew. Chem. 44/2016). Angewandte Chemie, 2016, 128, 14104-14104.	2.0	0
41	Micropatterning of the Ferroelectric Phase in a Poly(vinylidene difluoride) Film by Plasmonic Heating with Gold Nanocages. Angewandte Chemie, 2016, 128, 14032-14036.	2.0	11
42	Facile Synthesis of Silver Nanocubes with Sharp Corners and Edges in an Aqueous Solution. ACS Nano, 2016, 10, 9861-9870.	14.6	149
43	Micropatterning of the Ferroelectric Phase in a Poly(vinylidene difluoride) Film by Plasmonic Heating with Gold Nanocages. Angewandte Chemie - International Edition, 2016, 55, 13828-13832.	13.8	23
44	Surgical Sutures with Porous Sheaths for the Sustained Release of Growth Factors. Advanced Materials, 2016, 28, 4620-4624.	21.0	23
45	Synthesis of a new conjugated polymer for cell membrane imaging by using an intracellular targeting strategy. Polymer Chemistry, 2013, 4, 5212.	3.9	38
46	Conjugated Polymer oated Bacteria for Multimodal Intracellular and Extracellular Anticancer Activity. Advanced Materials, 2013, 25, 1203-1208.	21.0	73
47	Synthesis of a Bifunctional Fluorescent Polymer for Cell Imaging and Enzyme Detection. Macromolecular Chemistry and Physics, 2012, 213, 2486-2491.	2.2	9
48	Water-Soluble Conjugated Polymers for Imaging, Diagnosis, and Therapy. Chemical Reviews, 2012, 112, 4687-4735.	47.7	1,073
49	Composition formulae of ideal metallic glasses and their relevant eutectics established by a cluster-resonance model. Philosophical Magazine, 2011, 91, 2404-2418.	1.6	18
50	A potent fluorescent probe for the detection ofcellapoptosis. Chemical Communications, 2011, 47, 5524-5526.	4.1	46
51	Visual optical discrimination and detection of microbial pathogens based on diverse interactions of conjugated polyelectrolytes with cells. Journal of Materials Chemistry, 2011, 21, 7905.	6.7	38
52	Multifunctional Cationic Poly(<i>p</i> â€phenylene vinylene) Polyelectrolytes for Selective Recognition, Imaging, and Killing of Bacteria Over Mammalian Cells. Advanced Materials, 2011, 23, 4805-4810.	21.0	255
53	Biomedical Applications: Multifunctional Cationic Poly(<i>p</i> â€phenylene vinylene) Polyelectrolytes for Selective Recognition, Imaging, and Killing of Bacteria Over Mammalian Cells (Adv. Mater. 41/2011). Advanced Materials, 2011, 23, 4804-4804.	21.0	0
54	Rapid, Simple, and Highâ€Throughput Antimicrobial Susceptibility Testing and Antibiotics Screening. Angewandte Chemie - International Edition, 2011, 50, 9607-9610.	13.8	59