
Mingliang Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8366870/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide: A Core–Shell System Toward Synergetic Electrocatalytic Water Splitting. Advanced Materials, 2015, 27, 4752-4759.	11.1	705
2	Newly emerging applications of halloysite nanotubes: a review. Polymer International, 2010, 59, 574-582.	1.6	605
3	Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). European Polymer Journal, 2006, 42, 1362-1369.	2.6	429
4	Properties of halloysite nanotube–epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology, 2007, 18, 455703.	1.3	253
5	Carboxylated butadiene–styrene rubber/halloysite nanotube nanocomposites: Interfacial interaction and performance. Polymer, 2008, 49, 4871-4876.	1.8	221
6	Halloysite nanotubes as a novel β-nucleating agent for isotactic polypropylene. Polymer, 2009, 50, 3022-3030.	1.8	206
7	Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nature Communications, 2022, 13, 2662.	5.8	196
8	Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism. Journal of Hazardous Materials, 2015, 286, 533-544.	6.5	166
9	Atomicâ€Scale Core/Shell Structure Engineering Induces Precise Tensile Strain to Boost Hydrogen Evolution Catalysis. Advanced Materials, 2018, 30, e1707301.	11.1	148
10	Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effect on properties of composite film. Applied Physics A: Materials Science and Processing, 2007, 88, 391-395.	1.1	147
11	Green synthesis of Au nanoparticles immobilized on halloysite nanotubes for surface-enhanced Raman scattering substrates. Dalton Transactions, 2012, 41, 10465.	1.6	145
12	Natural inorganic nanotubes reinforced epoxy resin nanocomposites. Journal of Polymer Research, 2008, 15, 205-212.	1.2	140
13	WO _{3–<i>x</i>} Nanoplates Grown on Carbon Nanofibers for an Efficient Electrocatalytic Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2016, 8, 18132-18139.	4.0	129
14	Crystallization behavior of polyamide 6/halloysite nanotubes nanocomposites. Thermochimica Acta, 2009, 484, 48-56.	1.2	125
15	Reinforcing and Flame-Retardant Effects of Halloysite Nanotubes on LLDPE. Polymer-Plastics Technology and Engineering, 2009, 48, 607-613.	1.9	123
16	S-rich single-layered MoS ₂ nanoplates embedded in N-doped carbon nanofibers: efficient co-electrocatalysts for the hydrogen evolution reaction. Chemical Communications, 2014, 50, 15435-15438.	2.2	118
17	Interactions between halloysite nanotubes and 2,5-bis(2-benzoxazolyl) thiophene and their effects on reinforcement of polypropylene/halloysite nanocomposites. Nanotechnology, 2008, 19, 205709.	1.3	114
18	Styrene–butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid. Applied Surface Science, 2008, 255, 2715-2722.	3.1	108

#	Article	IF	CITATIONS
19	WSe ₂ and W(Se _x S _{1â^'x}) ₂ nanoflakes grown on carbon nanofibers for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 18090-18097.	5.2	107
20	The marriage and integration of nanostructures with different dimensions for synergistic electrocatalysis. Energy and Environmental Science, 2017, 10, 321-330.	15.6	104
21	Design of Two-Dimensional, Ultrathin MoS ₂ Nanoplates Fabricated Within One-Dimensional Carbon Nanofibers With Thermosensitive Morphology: High-Performance Electrocatalysts For The Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2014, 6, 22126-22137.	4.0	102
22	High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution. Chemical Engineering Journal, 2022, 431, 133251.	6.6	100
23	Facile and green fabrication of size-controlled AuNPs/CNFs hybrids for the highly sensitive simultaneous detection of heavy metal ions. Electrochimica Acta, 2016, 196, 422-430.	2.6	99
24	Highly efficient and durable PtCo alloy nanoparticles encapsulated in carbon nanofibers for electrochemical hydrogen generation. Chemical Communications, 2016, 52, 990-993.	2.2	95
25	Strain Relaxation in Metal Alloy Catalysts Steers the Product Selectivity of Electrocatalytic CO ₂ Reduction. ACS Nano, 2022, 16, 3251-3263.	7.3	94
26	Interatomic Electronegativity Offset Dictates Selectivity When Catalyzing the CO ₂ Reduction Reaction. Advanced Energy Materials, 2022, 12, .	10.2	91
27	Highly thermal conductive and electrically insulating polymer composites based on polydopamine-coated copper nanowire. Composites Science and Technology, 2018, 164, 153-159.	3.8	89
28	A 3D dendritic WSe ₂ catalyst grown on carbon nanofiber mats for efficient hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 12149-12153.	5.2	88
29	Artificial Nacre from Supramolecular Assembly of Graphene Oxide. ACS Nano, 2018, 12, 6228-6235.	7.3	85
30	A new strategy for the surface-free-energy-distribution induced selective growth and controlled formation of Cu ₂ O–Au hierarchical heterostructures with a series of morphological evolutions. Journal of Materials Chemistry A, 2013, 1, 919-929.	5.2	84
31	Facile and green synthesis of well-dispersed Au nanoparticles in PAN nanofibers by tea polyphenols. Journal of Materials Chemistry, 2012, 22, 9301.	6.7	81
32	Nano Highâ€Entropy Materials: Synthesis Strategies and Catalytic Applications. Small Structures, 2020, 1, 2000033.	6.9	80
33	Effects of halloysite nanotubes on kinetics and activation energy of non-isothermal crystallization of polypropylene. Journal of Polymer Research, 2010, 17, 109-118.	1.2	73
34	The design and construction of 3D rose-petal-shaped MoS2 hierarchical nanostructures with structure-sensitive properties. Journal of Materials Chemistry A, 2014, 2, 7680.	5.2	70
35	Functional materials from nature: honeycomb-like carbon nanosheets derived from silk cocoon as excellent electrocatalysts for hydrogen evolution reaction. Electrochimica Acta, 2016, 215, 223-230.	2.6	68
36	Immobilization of Pt Nanoparticles in Carbon Nanofibers: Bifunctional Catalyst for Hydrogen Evolution and Electrochemical Sensor. Electrochimica Acta, 2015, 167, 48-54.	2.6	67

#	Article	IF	CITATIONS
37	Morphology and Structure Engineering in Nanofiber Reactor: Tubular Hierarchical Integrated Networks Composed of Dual Phase Octahedral CoMn ₂ O ₄ /Carbon Nanofibers for Water Oxidation. Small, 2017, 13, 1700468.	5.2	66
38	Facile fabrication of AgNPs/(PVA/PEI) nanofibers: High electrochemical efficiency and durability for biosensors. Biosensors and Bioelectronics, 2013, 49, 210-215.	5.3	64
39	Effects of Melanin on Optical Behavior of Polymer: From Natural Pigment to Materials Applications. ACS Applied Materials & Interfaces, 2018, 10, 13100-13106.	4.0	64
40	Carbon nanofiber-supported PdNi alloy nanoparticles as highly efficient bifunctional catalysts for hydrogen and oxygen evolution reactions. Electrochimica Acta, 2017, 246, 17-26.	2.6	63
41	Detection of trace Cd2+, Pb2+ and Cu2+ ions via porous activated carbon supported palladium nanoparticles modified electrodes using SWASV. Materials Chemistry and Physics, 2019, 225, 433-442.	2.0	61
42	Preparation and Characterization of Polypropylene Grafted Halloysite and Their Compatibility Effect to Polypropylene/Halloysite Composite. Polymer Journal, 2006, 38, 1198-1204.	1.3	59
43	Engineering the Composition and Structure of Bimetallic Au–Cu Alloy Nanoparticles in Carbon Nanofibers: Self-Supported Electrode Materials for Electrocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 19756-19765.	4.0	55
44	In Situ Fabrication of Electrospun Carbon Nanofibers–Binary Metal Sulfides as Freestanding Electrode for Electrocatalytic Water Splitting. Advanced Fiber Materials, 2021, 3, 117-127.	7.9	53
45	Simple construction of ruthenium single atoms on electrospun nanofibers for superior alkaline hydrogen evolution: A dynamic transformation from clusters to single atoms. Chemical Engineering Journal, 2020, 392, 123655.	6.6	52
46	Sublayer Stable Fe Dopant in Porous Pd Metallene Boosts Oxygen Reduction Reaction. ACS Nano, 2022, 16, 522-532.	7.3	52
47	In situ interfacial engineering of nickel tungsten carbide Janus structures for highly efficient overall water splitting. Science Bulletin, 2020, 65, 640-650.	4.3	51
48	Low-Electronegativity Vanadium Substitution in Cobalt Carbide Induced Enhanced Electron Transfer for Efficient Overall Water Splitting. ACS Applied Materials & Interfaces, 2019, 11, 43261-43269.	4.0	49
49	Green synthesis of halloysite nanotubes supported Ag nanoparticles for photocatalytic decomposition of methylene blue. Journal Physics D: Applied Physics, 2012, 45, 325302.	1.3	47
50	Small and well-dispersed Cu nanoparticles on carbon nanofibers: Self-supported electrode materials for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41, 18044-18049.	3.8	47
51	Synthesis and deposition of ultrafine noble metallic nanoparticles on amino-functionalized halloysite nanotubes and their catalytic application. Materials Research Bulletin, 2015, 61, 375-382.	2.7	46
52	Freeâ€Standing and Ecoâ€Friendly Polyaniline Thin Films for Multifunctional Sensing of Physical and Chemical Stimuli. Advanced Functional Materials, 2017, 27, 1703147.	7.8	46
53	Benzothiazole sulfide compatibilized polypropylene/halloysite nanotubes composites. Applied Surface Science, 2009, 255, 4961-4969.	3.1	45
54	Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: A highly efficient surface-enhanced Raman scattering substrates with high density of "hot―spots. Biosensors and Bioelectronics, 2014, 54, 91-101.	5.3	45

#	Article	IF	CITATIONS
55	Synthesis and properties of the vapour-grown carbon nanofiber/epoxy shape memory and conductive foams prepared via latex technology. Composites Science and Technology, 2013, 76, 8-13.	3.8	44
56	Understanding the Role of Nanoscale Heterointerfaces in Core/Shell Structures for Water Splitting: Covalent Bonding Interaction Boosts the Activity of Binary Transition-Metal Sulfides. ACS Applied Materials & Interfaces, 2020, 12, 6250-6261.	4.0	42
57	Isolation of Metalloid Boron Atoms in Intermetallic Carbide Boosts the Catalytic Selectivity for Electrocatalytic N ₂ Fixation. Advanced Energy Materials, 2021, 11, 2102138.	10.2	42
58	Formation of Reinforcing Inorganic Network in Polymer via Hydrogen Bonding Self-Assembly Process. Polymer Journal, 2007, 39, 208-212.	1.3	41
59	Functionalization of cellulose nanocrystals with \hat{I}^3 -MPS and its effect on the adhesive behavior of acrylic pressure sensitive adhesives. Carbohydrate Polymers, 2019, 217, 168-177.	5.1	41
60	Two-dimensional molybdenum disulfide and tungsten disulfide interleaved nanowalls constructed on silk cocoon-derived N-doped carbon fibers for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2016, 41, 21870-21882.	3.8	38
61	Reinforcing thermoplastics with hydrogen bonding bridged inorganics. Physica B: Condensed Matter, 2010, 405, 655-662.	1.3	37
62	MORPHOLOGY, INTERFACIAL INTERACTION AND PROPERTIES OF STYRENE-BUTADIENE RUBBER/MODIFIED HALLOYSITE NANOTUBE NANOCOMPOSITES. Chinese Journal of Polymer Science (English Edition), 2009, 27, 857.	2.0	36
63	Single-atom catalysts for electrochemical clean energy conversion: recent progress and perspectives. Sustainable Energy and Fuels, 2020, 4, 996-1011.	2.5	36
64	Facile and green fabrication of small, mono-disperse and size-controlled noble metal nanoparticles embedded in water-stable polyvinyl alcohol nanofibers: High sensitive, flexible and reliable materials for biosensors. Sensors and Actuators B: Chemical, 2013, 185, 608-619.	4.0	35
65	Design of Intrinsically Flame-Retardant Vanillin-Based Epoxy Resin for Thermal-Conductive Epoxy/Graphene Aerogel Composites. ACS Applied Materials & Interfaces, 2021, 13, 59341-59351.	4.0	35
66	NiCoSe 2-x /N-doped C mushroom-like core/shell nanorods on N-doped carbon fiber for efficiently electrocatalyzed overall water splitting. Electrochimica Acta, 2018, 272, 161-168.	2.6	34
67	Facile fabrication of polyaniline nanotubes/gold hybrid nanostructures as substrate materials for biosensors. Chemical Engineering Journal, 2014, 258, 281-289.	6.6	33
68	Synthesis and Immobilization of Pt Nanoparticles on Amino-Functionalized Halloysite Nanotubes toward Highly Active Catalysts. Nanomaterials and Nanotechnology, 2015, 5, 4.	1.2	33
69	Facile fabrication of AuNPs/PANI/HNTs nanostructures for high-performance electrochemical sensors towards hydrogen peroxide. Chemical Engineering Journal, 2014, 248, 307-314.	6.6	32
70	Selective growth of Au nanograins on specific positions (tips, edges and facets) of Cu2O octahedrons to form Cu2O–Au hierarchical heterostructures. Dalton Transactions, 2012, 41, 13795.	1.6	31
71	Synthesis of silver nanoparticles in electrospun polyacrylonitrile nanofibers using tea polyphenols as the reductant. Polymer Engineering and Science, 2013, 53, 1099-1108.	1.5	31
72	Design and fabrication of size-controlled Pt–Au bimetallic alloy nanostructure in carbon nanofibers: a bifunctional material for biosensors and the hydrogen evolution reaction. Journal of Materials Science, 2017, 52, 8207-8218.	1.7	31

#	Article	IF	CITATIONS
73	Designed Synthesis of Sizeâ€Controlled PtCu Alloy Nanoparticles Encapsulated in Carbon Nanofibers and Their High Efficient Electrocatalytic Activity Toward Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2017, 4, 1700005.	1.9	31
74	Photothermal-Responsive Graphene Oxide Membrane with Smart Gates for Water Purification. ACS Applied Materials & amp; Interfaces, 2019, 11, 44886-44893.	4.0	31
75	Antimicrobial Waterborne Polyurethanes Based on Quaternary Ammonium Compounds. Industrial & Engineering Chemistry Research, 2020, 59, 458-463.	1.8	31
76	A novel synergistic confinement strategy for controlled synthesis of high-entropy alloy electrocatalysts. Chemical Communications, 2021, 57, 2637-2640.	2.2	31
77	Thermal Decomposition and Oxidation Ageing Behaviour of Polypropylene/Halloysite Nanotube Nanocomposites. Polymers and Polymer Composites, 2007, 15, 321-328.	1.0	30
78	The Role of Interactions between Halloysite Nanotubes and 2,2′-(1,2-Ethenediyldi-4,1-phenylene) Bisbenzoxazole in Halloysite Reinforced Polypropylene Composites. Polymer Journal, 2008, 40, 1087-1093.	1.3	30
79	Facile Fabrication of ZnO/TiO ₂ Heterogeneous Nanofibres and Their Photocatalytic Behaviour and Mechanism towards Rhodamine B. Nanomaterials and Nanotechnology, 2016, 6, 9.	1.2	30
80	Synthesis of a MoS2(1â^'x)Se2x ternary alloy on carbon nanofibers as the high efficient water splitting electrocatalyst. International Journal of Hydrogen Energy, 2017, 42, 1912-1918.	3.8	30
81	Facile fabrication of a binary NiCo phosphide withÂhierarchical architecture for efficient hydrogen evolution reactions. International Journal of Hydrogen Energy, 2019, 44, 4188-4196.	3.8	30
82	Excellent UV Resistance of Polylactide by Interfacial Stereocomplexation with Double-Shell-Structured TiO ₂ Nanohybrids. ACS Applied Materials & Interfaces, 2020, 12, 49090-49100.	4.0	29
83	Probing the unexpected behavior of AuNPs migrating through nanofibers: a new strategy for the fabrication of carbon nanofiber–noble metal nanocrystal hybrid nanostructures. Journal of Materials Chemistry A, 2014, 2, 11728-11741.	5.2	28
84	Insitu growth of Rh nanoparticles with controlled sizes and dispersions on the cross-linked PVA–PEI nanofibers and their electrocatalytic properties towards H ₂ O ₂ . RSC Advances, 2014, 4, 794-804.	1.7	28
85	Carbon nanofibers as nanoreactors in the construction of PtCo alloy carbon core-shell structures for highly efficient and stable water splitting. Materials and Design, 2016, 109, 162-170.	3.3	28
86	Hyper-dendritic PdZn nanocrystals as highly stable and efficient bifunctional electrocatalysts towards oxygen reduction and ethanol oxidation. Chemical Engineering Journal, 2021, 420, 130503.	6.6	27
87	Artificial Nacre Epoxy Nanomaterials Based on Janus Graphene Oxide for Thermal Management Applications. ACS Applied Materials & Interfaces, 2020, 12, 44273-44280.	4.0	26
88	Nitrogen and gold nanoparticles co-doped carbon nanofiber hierarchical structures for efficient hydrogen evolution reactions. Electrochimica Acta, 2016, 208, 1-9.	2.6	25
89	Activating MoS2 by interface engineering for efficient hydrogen evolution catalysis. Materials Research Bulletin, 2019, 112, 46-52.	2.7	25
90	Scalable NiCo <i>_x</i> S <i>_y</i> PANI@GF Membranes with Broadband Light Absorption and High Salt-Resistance for Efficient Solar-Driven Interfacial Evaporation. ACS Applied Energy Materials, 2021, 4, 3563-3572.	2.5	24

#	Article	IF	CITATIONS
91	Effects of Thermal and UV-induced Grafting of Bismaleimide on Mechanical Performance of Reclaimed Rubber/Natural Rubber Blends. Journal of Polymer Research, 2005, 12, 473-482.	1.2	23
92	Smart Design of Rapid Crystallizing and Nonleaching Antibacterial Poly(lactide) Nanocomposites by Sustainable Aminolysis Grafting and in Situ Interfacial Stereocomplexation. ACS Sustainable Chemistry and Engineering, 2018, 6, 13367-13377.	3.2	23
93	Integrating the cationic engineering and hollow structure engineering into perovskites oxides for efficient and stable electrocatalytic oxygen evolution. Electrochimica Acta, 2019, 327, 135033.	2.6	23
94	The 2D/2D p–n heterojunction of ZnCoMOF/g ₃ N ₄ with enhanced photocatalytic hydrogen evolution under visible light irradiation. Applied Organometallic Chemistry, 2021, 35, e6124.	1.7	23
95	Silk-derived graphene-like carbon with high electrocatalytic activity for oxygen reduction reaction. RSC Advances, 2016, 6, 34219-34224.	1.7	22
96	Preferred zinc-modified melamine phytate for the flame retardant polylactide with limited smoke release. New Journal of Chemistry, 2021, 45, 13329-13339.	1.4	22
97	One-dimensional, space-confined, solid-phase growth of the Cu9S5@MoS2 core–shell heterostructure for electrocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 595, 88-97.	5.0	22
98	Kelp-Derived Activated Porous Carbon for the Detection of Heavy Metal Ions via Square Wave Anodic Stripping Voltammetry. Electrocatalysis, 2020, 11, 59-67.	1.5	21
99	Thermodynamically driven metal diffusion strategy for controlled synthesis of high-entropy alloy electrocatalysts. Chemical Communications, 2021, 57, 10027-10030.	2.2	21
100	Core–Shell Starch Nanoparticles and Their Toughening of Polylactide. Industrial & Engineering Chemistry Research, 2018, 57, 13048-13054.	1.8	20
101	Controlled morphology evolution of electrospun carbon nanofiber templated tungsten disulfide nanostructures. Electrochimica Acta, 2015, 176, 255-264.	2.6	19
102	Heterostructure design of Cu ₂ O/Cu ₂ S core/shell nanowires for solar-driven photothermal water vaporization towards desalination. Sustainable Energy and Fuels, 2020, 4, 6023-6029.	2.5	19
103	Investigation on Structures and Properties of Shape Memory Polyurethane/Silica Nanocomposites. Chinese Journal of Chemistry, 2011, 29, 703-710.	2.6	18
104	Core–Shell Starch Nanoparticles Improve the Mechanical and Thermal Properties of Poly(propylene) Tj ETQq0 () 0 ₃ rgBT /C	overlock 10 T
105	A Highly Active and Robust CoP/CoS2-Based Electrocatalyst Toward Overall Water Splitting. Electrocatalysis, 2019, 10, 253-261.	1.5	18
106	Controlled growth of ultrafine metal nanoparticles mediated by solid supports. Nanoscale Advances, 2021, 3, 1865-1886.	2.2	18
107	Direct Z-scheme CdS–NiPc heterojunctions as noble metal-free photocatalysts for enhanced photocatalytic hydrogen evolution. Catalysis Science and Technology, 2021, 11, 7683-7693.	2.1	18

108A Facile Strategy to Synthesize Cobaltâ€Based Selfâ€Supported Material for Electrocatalytic Water1.217108Splitting. Particle and Particle Systems Characterization, 2017, 34, 1700189.1.217

#	Article	IF	CITATIONS
109	Binary nickel iron phosphide composites with oxidized surface groups as efficient electrocatalysts for the oxygen evolution reaction. Sustainable Energy and Fuels, 2019, 3, 3518-3524.	2.5	17
110	Atom-precise incorporation of platinum into ultrafine transition metal carbides for efficient synergetic electrochemical hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 4911-4919.	5.2	17
111	Conductive metal and covalent organic frameworks for electrocatalysis: design principles, recent progress and perspective. Nanoscale, 2022, 14, 277-288.	2.8	17
112	High entropy alloy nitrides with integrated nanowire/nanosheet architecture for efficient alkaline hydrogen evolution reactions. New Journal of Chemistry, 2021, 45, 22255-22260.	1.4	16
113	Beyond Colloidal Synthesis: Nanofiber Reactor to Design Self-Supported Core–Shell Pd ₁₆ S ₇ /MoS ₂ /CNFs Electrode for Efficient and Durable Hydrogen Evolution Catalysis. ACS Applied Energy Materials, 2019, 2, 2013-2021.	2.5	15
114	Flexible and recyclable bio-based transient resistive memory enabled by self-healing polyimine membrane. Journal of Colloid and Interface Science, 2022, 608, 1126-1134.	5.0	15
115	Use of TX100-dangled epoxy as a reactive noncovalent dispersant of vapor-grown carbon nanofibers in an aqueous solution. Journal of Colloid and Interface Science, 2013, 391, 8-15.	5.0	14
116	Building block nanoparticles engineering induces multi-element perovskite hollow nanofibers structure evolution to trigger enhanced oxygen evolution. Electrochimica Acta, 2018, 279, 301-310.	2.6	14
117	Boosting oxygen evolution through phase and electronic modulation of highly dispersed tungsten carbide with nickel doping. Journal of Colloid and Interface Science, 2021, 585, 258-266.	5.0	14
118	Synthesis and Catalytic Properties of Polyaniline/Au Hybrid Nanostructure. Soft Materials, 2014, 12, 179-184.	0.8	13
119	A self-supported electrochemical sensor for simultaneous sensitive detection of trace heavy metal ions based on PtAu alloy/carbon nanofibers. Analytical Methods, 2017, 9, 6801-6807.	1.3	13
120	Graphene-assisted fabrication of poly(ε-caprolactone)-based nanocomposites with high mechanical properties and self-healing functionality. New Journal of Chemistry, 2018, 42, 10348-10356.	1.4	13
121	High-Performance Polylactic Acid Materials Enabled by TiO ₂ –Polydopamine Hybrid Nanoparticles. Industrial & Engineering Chemistry Research, 2021, 60, 3999-4008.	1.8	13
122	The preparation of tubular heterostructures based on titanium dioxide and silica nanotubes and their photocatalytic activity. Dalton Transactions, 2014, 43, 1846-1853.	1.6	12
123	AgNPs/PVA and AgNPs/(PVA/PEI) hybrids: preparation, morphology and antibacterial activity. Journal Physics D: Applied Physics, 2013, 46, 345303.	1.3	11
124	Facile Fabrication of Palladium Nanoparticles Immobilized on the Water-Stable Polyvinyl Alcohol/Polyehyleneimine Nanofibers Via <i>In-Situ</i> Reduction and Their High Electrochemical Activity. Soft Materials, 2014, 12, 387-395.	0.8	11
125	Synthesis of MoSe ₂ /Carbon Nanofibers Hybrid and Its Hydrogen Evolution Reaction Performance. Chemistry Letters, 2016, 45, 69-71.	0.7	11
126	<i>In situ</i> synthesis of small Pt nanoparticles on chitin aerogel derived N doped ultra-thin carbon nanofibers for superior hydrogen evolution catalysis. New Journal of Chemistry, 2019, 43, 16490-16496.	1.4	11

#	Article	IF	CITATIONS
127	Hybrid double-network hydrogels with excellent mechanical properties. New Journal of Chemistry, 2020, 44, 16569-16576.	1.4	11
128	Skin bioinspired anti-ultraviolet melanin/TiO2 nanoparticles without penetration for efficient broad-spectrum sunscreen. Colloid and Polymer Science, 2021, 299, 1797-1805.	1.0	11
129	Facile Fabrication of Au Nanoparticles Immobilized on Polyaniline Nanofibers: High Sensitive Nonenzymatic Hydrogen Peroxide Sensor. Nanoscience and Nanotechnology Letters, 2015, 7, 127-133.	0.4	11
130	Morphology and properties of halloysite nanotubes reinforced polypropylene nanocomposites. E-Polymers, 2008, 8, .	1.3	10
131	Synthesis of Transparent Densely Crosslinked Polysiloxane with High Refractive Index. Journal of Macromolecular Science - Physics, 2012, 51, 2462-2472.	0.4	10
132	Nitrogen anion-decorated cobalt tungsten disulfides solid solutions on the carbon nanofibers for water splitting. Nanotechnology, 2018, 29, 385602.	1.3	8
133	Rheology-determined critical conditions for shear-induced crystallization of biosynthesized polyhydroxyalkanoates. International Journal of Biological Macromolecules, 2020, 147, 1301-1308.	3.6	8
134	Influence of hybrid fibrils of 2,5-bis(2-benzoxazolyl) thiophene and halloysite nanotubes on the crystallization behaviour of polypropylene. Journal Physics D: Applied Physics, 2009, 42, 075306.	1.3	7
135	Fabrication of Gold Nanoparticles Modified Carbon Nanofibers/Polyaniline Electrode for H2O2Determination. Journal of the Electrochemical Society, 2014, 161, H816-H821.	1.3	7
136	Two-dimension on two-dimension growth: hierarchical Ni _{0.2} Mo _{0.8} N/Fe-doped Ni ₃ N nanosheet array for overall water splitting. RSC Advances, 2021, 11, 19797-19804.	1.7	7
137	Organic-inorganic hybrid network constructed in polypropylene matrix and its reinforcing effects on polypropylene composites. Journal of Reinforced Plastics and Composites, 2013, 32, 174-182.	1.6	6
138	When amine-based conducting polymers meet Au nanoparticles: suppressing H ₂ evolution and promoting the selective electroreduction of CO ₂ to CO at low overpotentials. Sustainable Energy and Fuels, 2021, 5, 779-786.	2.5	6
139	TEMPLATE STRATEGY FOR THE SYNTHESIS OF Cu2O–Pt HIERARCHICAL HETEROSTRUCTURES FOR THE DEGRADATION OF METHYLENE BLUE. Nano, 2013, 08, 1350062.	0.5	5
140	Facile Construction of MoS2/CNFs Hybrid Structure for a Hydrogen Evolution Reaction. International Journal of Electrochemical Science, 2017, , 4563-4573.	0.5	5
141	Interface engineering in core–shell Co ₉ S ₈ @MoS ₂ nanocrystals induces enhanced hydrogen evolution in acidic and alkaline media. New Journal of Chemistry, 2021, 45, 11167-11173.	1.4	5
142	Effects of Plant Polyphenols on the Interface and Mechanical Properties of Rubber/Silica Composites. Polymers and Polymer Composites, 2012, 20, 853-860.	1.0	2
143	Effects of Magnesium Borate Whiskers on the Antiwear and Mechanical Performance of Natural Rubber. Tribology Transactions, 2012, 55, 822-828.	1.1	1
144	Electrocatalysis: Morphology and Structure Engineering in Nanofiber Reactor: Tubular Hierarchical Integrated Networks Composed of Dual Phase Octahedral CoMn ₂ O ₄ /Carbon Nanofibers for Water Oxidation (Small 26/2017). Small, 2017, 13, .	5.2	1

#	Article	IF	CITATIONS
145	Electrocatalytic Nanomaterials: Atomicâ€Scale Core/Shell Structure Engineering Induces Precise Tensile Strain to Boost Hydrogen Evolution Catalysis (Adv. Mater. 26/2018). Advanced Materials, 2018, 30, 1870191.	11.1	1
146	Fabrication and Properties of Shape Memory Polyurethane Surface Modified Vapor Grown Carbon Nanofiber Composites. Advanced Materials Research, 2011, 239-242, 855-859.	0.3	0
147	SYNTHESIS AND CHARACTERIZATION OF Au NANOPARTICLES/REDUCED GRAPHENE OXIDE NANOCOMPOSITE: A FACILE AND ECO-FRIENDLY APPROACH. Nano, 2014, 09, 1450031.	0.5	0