
Rastko Vasilic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8366815/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Formation of plasma electrolytic oxidation coatings on pure niobium in different electrolytes. Applied Surface Science, 2022, 573, 151629.	3.1	16
2	One-pot plasma electrolytic oxidation synthesis of TiO2/Sb2O3 coatings for photocatalysis. Materials Letters, 2022, 309, 131404.	1.3	3
3	TiO2/Bi2O3 coatings formed by plasma electrolytic oxidation of titanium for photocatalytic applications. Journal of Materials Science: Materials in Electronics, 2022, 33, 4467-4481.	1.1	7
4	Photocatalytic degradation of methyl orange in the presence of transition metals (Mn, Ni, Co) modified TiO2 coatings formed by plasma electrolytic oxidation. Solid State Sciences, 2022, 129, 106896.	1.5	7
5	Role of phosphate, silicate and aluminate in the electrolytes on PEO coating formation and properties of coated Ti6Al4V alloy. Applied Surface Science, 2022, 595, 153523.	3.1	19
6	Controlling the Morphology of Barrel-Shaped Nanostructures Grown via CuZn Electro-Oxidation. Materials, 2022, 15, 3961.	1.3	3
7	Properties of ZnO/ZnAl2O4 composite PEO coatings on zinc alloy Z1. Surface and Coatings Technology, 2021, 410, 126948.	2.2	7
8	Characterization of Al W oxide coatings on aluminum formed by pulsed direct current plasma electrolytic oxidation at ultra-low duty cycles. Surface and Coatings Technology, 2021, 411, 126982.	2.2	10
9	Formation and Properties of Oxide Coatings with Immobilized Zeolites Obtained by Plasma Electrolytic Oxidation of Aluminum. Metals, 2021, 11, 1241.	1.0	4
10	Zeolite-containing photocatalysts immobilized on aluminum support by plasma electrolytic oxidation. Surfaces and Interfaces, 2021, 26, 101307.	1.5	10
11	Implementation of the Chicot–Lesage Composite Hardness Model in a Determination of Absolute Hardness of Copper Coatings Obtained by the Electrodeposition Processes. Metals, 2021, 11, 1807.	1.0	5
12	High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO ₂ nanotube arrays as interactive supports for Ir nanoparticles. Journal of Materials Chemistry A, 2020, 8, 22773-22790.	5.2	29
13	Enhanced ultraviolet light driven photocatalytic activity of ZnO particles incorporated by plasma electrolytic oxidation into Al2O3 coatings co-doped with Ce3+. Optical Materials, 2020, 101, 109768.	1.7	12
14	Morphology, Structure and Mechanical Properties of Copper Coatings Electrodeposited by Pulsating Current (PC) Regime on Si(111). Metals, 2020, 10, 488.	1.0	13
15	Down- and up-conversion photoluminescence of ZrO2:Ho3+ and ZrO2:Ho3+/Yb3+ coatings formed by plasma electrolytic oxidation. Journal of Alloys and Compounds, 2019, 785, 1222-1232.	2.8	27
16	Efficient sensitization of Sm2+ emission by Eu2+ under UV excitation in Al2O3 host formed by plasma electrolytic oxidation. Materials Letters, 2019, 234, 9-12.	1.3	4
17	Photoluminescence properties of Er3+/Yb3+ doped ZrO2 coatings formed by plasma electrolytic oxidation. Journal of Luminescence, 2019, 208, 296-301.	1.5	21
18	Spectroscopic study of micro-discharges during plasma electrolytic oxidation of Al-Zn-Si alloy. Journal of the Serbian Chemical Society, 2019, 84, 915-923.	0.4	6

#	Article	IF	CITATIONS
19	Down-conversion photoluminescence of ZrO2:Er3+ coatings formed by plasma electrolytic oxidation. Materials Letters, 2018, 219, 251-255.	1.3	24
20	Photoluminescence properties of Eu3+ doped HfO2 coatings formed by plasma electrolytic oxidation of hafnium. Optical Materials, 2018, 77, 19-24.	1.7	29
21	Effect of Tb3+ doping on the photocatalytic activity of TiO2 coatings formed by plasma electrolytic oxidation of titanium. Surface and Coatings Technology, 2018, 337, 279-289.	2.2	30
22	Structural and photoluminescent properties of ZrO2:Tb3+ coatings formed by plasma electrolytic oxidation. Journal of Luminescence, 2018, 197, 83-89.	1.5	17
23	Eu2+ photoluminescence in Al2O3 coatings obtained by plasma electrolytic oxidation. Journal of Luminescence, 2018, 199, 240-244.	1.5	15
24	Influence of iron doping on photocatalytic activity of TiO2 coatings formed on titanium by plasma electrolytic oxidation. Journal of Materials Science: Materials in Electronics, 2018, 29, 9427-9434.	1.1	12
25	CdS particles modified TiO2 coatings formed by plasma electrolytic oxidation with enhanced photocatalytic activity. Surface and Coatings Technology, 2018, 344, 528-533.	2.2	25
26	Deposition of Pd nanoparticles on the walls of cathodically hydrogenated TiO2 nanotube arrays via galvanic displacement: A novel route to produce exceptionally active and durable composite electrocatalysts for cost-effective hydrogen evolution. Nano Energy, 2018, 47, 527-538.	8.2	32
27	Optimization of a nanoparticle ball milling process parameters using the response surface method. Advanced Powder Technology, 2018, 29, 2129-2139.	2.0	27
28	Photoluminescence of Ce3+ and Ce3+/Tb3+ ions in Al2O3 host formed by plasma electrolytic oxidation. Journal of Luminescence, 2018, 203, 576-581.	1.5	20
29	The effect of sintering temperature on mesoporous structure of WO3 doped TiO2 powders. Science of Sintering, 2018, 50, 123-132.	0.5	1
30	Photoluminescence of Sm2+ / Sm3+ doped Al2O3 coatings formed by plasma electrolytic oxidation of aluminum. Journal of Luminescence, 2017, 192, 110-116.	1.5	16
31	TiO2/SnO2 photocatalyst formed by plasma electrolytic oxidation. Materials Letters, 2017, 196, 292-295.	1.3	16
32	Morphology and photoluminescence of nanostructured oxides grown by copper passivation in aqueous potassium hydroxide solution. Materials Letters, 2017, 198, 89-92.	1.3	16
33	Preparation and characterization of Pt-Ba-Al 2 O 3 coatings obtained by spray pyrolysis. Thin Solid Films, 2017, 628, 7-12.	0.8	2
34	MgO/ZnO coatings formed on magnesium alloy AZ31 by plasma electrolytic oxidation: Structural, photoluminescence and photocatalytic investigation. Surface and Coatings Technology, 2017, 310, 98-105.	2.2	41
35	Structural and fractal characterization of tungstophosphoric acid modified titanium dioxide photocatalyst. Journal of Physics and Chemistry of Solids, 2017, 103, 95-102.	1.9	7
36	Plasma electrolytic oxidation of hafnium. International Journal of Refractory Metals and Hard Materials, 2017, 69, 153-157.	1.7	18

#	Article	IF	CITATIONS
37	The determination of micro-arc plasma composition and properties of nanoparticles formed during cathodic plasma electrolysis of 304 stainless steel. Europhysics Letters, 2017, 118, 33001.	0.7	1
38	Orange–red photoluminescence of Nb2O5:Eu3+, Sm3+ coatings formed by plasma electrolytic oxidation of niobium. Journal of Alloys and Compounds, 2016, 685, 881-889.	2.8	47
39	The formation of tungsten doped Al2O3/ZnO coatings on aluminum by plasma electrolytic oxidation and their application in photocatalysis. Applied Surface Science, 2016, 377, 37-43.	3.1	40
40	Formation and characterization of ZnO films on zinc substrate by plasma electrolytic oxidation. Surface and Coatings Technology, 2016, 307, 650-657.	2.2	38
41	Characterization and photocatalytic properties of tungsten doped TiO2 coatings on aluminum obtained by plasma electrolytic oxidation. Surface and Coatings Technology, 2016, 305, 192-199.	2.2	36
42	The study of micro-arc discharges during cathodic plasma electrolysis of refractory metals using the spectral line shape of Na I lines. Europhysics Letters, 2016, 113, 68001.	0.7	1
43	Photoluminescence of Sm 3+ doped ZrO 2 coatings formed by plasma electrolytic oxidation of zirconium. Materials Letters, 2016, 164, 329-332.	1.3	26
44	Formation and photoluminescence of Eu3+ doped zirconia coatings formed by plasma electrolytic oxidation. Journal of Luminescence, 2016, 176, 25-31.	1.5	33
45	Structural, photoluminescent and photocatalytic properties of TiO2:Eu3+ coatings formed by plasma electrolytic oxidation. Applied Surface Science, 2016, 370, 218-228.	3.1	76
46	Real-time imaging, spectroscopy, and structural investigation of cathodic plasma electrolytic oxidation of molybdenum. Journal of Applied Physics, 2015, 117, .	1.1	9
47	Zirconia films formed by plasma electrolytic oxidation: Photoluminescent and photocatalytic properties. Optical Materials, 2015, 40, 20-25.	1.7	37
48	Process modelling and analysis of plasma electrolytic oxidation of titanium for TiO2/WO3 thin film photocatalysts by response surface methodology. Surface and Coatings Technology, 2015, 269, 250-257.	2.2	36
49	Luminescence of oxide films during the electrolytic oxidation of tantalum. Electrochimica Acta, 2015, 152, 323-329.	2.6	12
50	Characterization of plasma electrolytic oxidation of magnesium alloy AZ31 in alkaline solution containing fluoride. Surface and Coatings Technology, 2015, 273, 1-11.	2.2	53
51	Synthesis and characterization of Al2O3/ZnO coatings formed by plasma electrolytic oxidation. Surface and Coatings Technology, 2015, 276, 573-579.	2.2	37
52	Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid. Applied Surface Science, 2015, 355, 912-920.	3.1	31
53	The characterization of cathodic plasma electrolysis of tungsten by means of optical emission spectroscopy techniques. Europhysics Letters, 2015, 110, 48004.	0.7	7
54	One-step preparation and photocatalytic performance of vanadium doped TiO2 coatings. Materials Chemistry and Physics, 2015, 151, 337-344.	2.0	38

#	Article	IF	CITATIONS
55	Characterization of Porous Anodic Aluminum Oxide Films by Luminescence Methods - A Review. Current Nanoscience, 2015, 11, 547-559.	0.7	11
56	Investigation of plasma electrolytic oxidation on valve metals by means of molecular spectroscopy – a review. RSC Advances, 2014, 4, 25759-25789.	1.7	61
57	TiO 2 /WO 3 photocatalytic composite coatings prepared by spray pyrolysis. Surface and Coatings Technology, 2014, 258, 763-771.	2.2	38
58	Spectroscopic Investigation of Direct Current (DC) Plasma Electrolytic Oxidation of Zirconium in Citric Acid. Applied Spectroscopy, 2014, 68, 101-112.	1.2	22
59	Corrosion evaluation of zirconium doped oxide coatings on aluminum formed by plasma electrolytic oxidation. Acta Chimica Slovenica, 2014, 61, 308-15.	0.2	4
60	Galvanoluminescence of oxide films during the anodization of titanium. Electrochemistry Communications, 2013, 35, 22-25.	2.3	5
61	Corrosion Stability of Oxide Coatings Formed by Plasma Electrolytic Oxidation of Aluminum: Optimization of Process Time. Corrosion, 2013, 69, 693-702.	0.5	27
62	Preparation and photocatalyic properties of TiO2-P25 film prepared by spray pyrolysis method. Applied Surface Science, 2013, 274, 321-327.	3.1	18
63	Fractal approach to surface roughness of TiO2/WO3 coatings formed by plasma electrolytic oxidation process. Thin Solid Films, 2013, 539, 112-116.	0.8	10
64	Characterization of the plasma electrolytic oxidation of titanium in sodium metasilicate. Applied Surface Science, 2013, 265, 226-233.	3.1	96
65	Epitaxial growth by monolayer restricted galvanic displacement. Journal of the Serbian Chemical Society, 2012, 77, 1239-1242.	0.4	0
66	Photocatalytic properties of TiO2/WO3 coatings formed by plasma electrolytic oxidation of titanium in 12-tungstosilicic acid. Applied Catalysis B: Environmental, 2012, 126, 334-341.	10.8	70
67	Luminescence during the anodization of zirconium. Electrochimica Acta, 2012, 79, 133-140.	2.6	30
68	Luminescence during anodization of magnesium alloy AZ31. Electrochimica Acta, 2012, 59, 354-359.	2.6	40
69	Luminescence of the B1Σ+–X1Σ+ band system of MgO during plasma electrolytic oxidation of magnesium alloy. Surface and Coatings Technology, 2012, 206, 2905-2913.	2.2	21
70	Plasma electrolytic oxidation of tantalum. Serbian Journal of Electrical Engineering, 2012, 9, 81-94.	0.2	8
71	Preparation of silicate tungsten bronzes on aluminum by plasma electrolytic oxidation process in 12-tungstosilicic acid. Applied Surface Science, 2011, 257, 9555-9561.	3.1	20
72	Characterization of oxide coatings formed on tantalum by plasma electrolytic oxidation in 12-tungstosilicic acid. Applied Surface Science, 2011, 257, 10590-10594.	3.1	61

#	Article	IF	CITATIONS
73	Spectroscopic and real-time imaging investigation of tantalum plasma electrolytic oxidation (PEO). Surface and Coatings Technology, 2011, 205, 5406-5413.	2.2	80
74	Plasma electrolytic oxidation of titanium in heteropolytungstate acids. Surface and Coatings Technology, 2011, 206, 575-581.	2.2	50
75	Luminescence of the B2Σ+–X2Σ+ band system of AlO during plasma electrolytic oxidation of aluminum. Electrochimica Acta, 2011, 56, 10122-10129.	2.6	25
76	Photoluminescent properties of barrier anodic oxide films on aluminum. Thin Solid Films, 2011, 519, 3516-3521.	0.8	38
77	Luminescence properties of oxide films formed by anodization of aluminum in 12-tungstophosphoric acid. Electrochimica Acta, 2010, 55, 3857-3863.	2.6	45
78	Characterization of the plasma electrolytic oxidation of aluminium in sodium tungstate. Corrosion Science, 2010, 52, 3258-3265.	3.0	97
79	The effect of annealing on the photoluminescent and optical properties of porous anodic alumina films formed in sulfamic acid. Applied Surface Science, 2009, 256, 763-767.	3.1	45
80	Structural and luminescence characterization of porous anodic oxide films on aluminum formed in sulfamic acid solution. Applied Surface Science, 2008, 255, 2845-2850.	3.1	29
81	A Kinetic Model for Redox Replacement of UPD Layers. Electrochemical and Solid-State Letters, 2007, 10, D79.	2.2	17
82	Epitaxial Growth of Cu on Au(111) and Ag(111) by Surface Limited Redox ReplacementAn Electrochemical and STM Study. Journal of Physical Chemistry C, 2007, 111, 4036-4041.	1.5	81
83	Carbon monoxide oxidation on Au(111) surface decorated by spontaneously deposited Pt. Electrochimica Acta, 2007, 53, 998-1005.	2.6	59
84	Epitaxial Growth of Cu on Au(111) and Ag (111) by Surface Limited Redox Replacement. ECS Transactions, 2006, 2, 307-314.	0.3	1
85	Epitaxial Growth of Ag on Au(111) by Galvanic Displacement of Pb and Tl Monolayers. Journal of the Electrochemical Society, 2006, 153, C648.	1.3	49
86	Epitaxial Growth of Ag on Au(111) by Monolayer Restricted Galvanic Displacement. ECS Transactions, 2006, 1, 33-44.	0.3	3
87	Epitaxial Growth by Monolayer-Restricted Galvanic Displacement. Electrochemical and Solid-State Letters, 2005, 8, C173.	2.2	53
88	The galvanoluminescence spectra of porous oxide layers formed by aluminum anodization in oxalic acid. Electrochimica Acta, 1999, 45, 993-996.	2.6	24