Liang-Wen Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8366039/publications.pdf Version: 2024-02-01

LIANC-WENL

#	Article	IF	CITATIONS
1	Fabrication and characterization of homostructured photodiodes with Li-doped ZnO nanorods. Microsystem Technologies, 2022, 28, 369-375.	1.2	15
2	Characterization of nanogenerators based on S-doped zinc oxide nanorod arrays. Microsystem Technologies, 2022, 28, 395-401.	1.2	14
3	Application of Ni-doped ZnO nanorods in surface acoustic wave ultraviolet photodetectors. Modern Physics Letters B, 2022, 36, .	1.0	1
4	UV-Enhanced Field-Emission Performances of Pd-Adsorbed ZnO Nanorods through Photochemical Synthesis. ECS Journal of Solid State Science and Technology, 2021, 10, 017001.	0.9	13
5	Fabrication and Characterization of a-IGZO Thin-Film Transistors With and Without Passivation Layers. ECS Journal of Solid State Science and Technology, 2021, 10, 027002.	0.9	7
6	Improving ZnO Nanorod Humidity Sensors with Pt Nanoparticle Adsorption. ECS Journal of Solid State Science and Technology, 2021, 10, 037003.	0.9	20
7	Characteristics of Metal–Semiconductor–Metal Ultraviolet Photodetectors Based on Pure ZnO/Amorphous IGZO Thin-Film Structures. Journal of Nanomaterials, 2021, 2021, 1-6.	1.5	4
8	Improved pH-Sensing Characteristics by Pt Nanoparticle-Decorated ZnO Nanostructures. ECS Journal of Solid State Science and Technology, 2021, 10, 067001.	0.9	13
9	Improvement of the UV-Sensing Performance of Ga-Doped ZnO Nanostructures via a Wet Chemical Solution at Room Temperature. ECS Journal of Solid State Science and Technology, 2021, 10, 127001.	0.9	30
10	Fabrication of Ultraviolet Photodetectors Based on Fe-Doped ZnO Nanorod Structures. Sensors, 2020, 20, 3861.	2.1	40
11	Synthesis of Ni-Doped ZnO Nanorod Arrays by Chemical Bath Deposition and Their Application to Nanogenerators. Energies, 2020, 13, 2731.	1.6	22
12	Fabrication and Characterization of Ni-Doped ZnO Nanorod Arrays for UV Photodetector Application. Journal of the Electrochemical Society, 2020, 167, 067506.	1.3	40
13	Characteristics of Gas Sensors Based on Co-Doped ZnO Nanorod Arrays. Journal of the Electrochemical Society, 2020, 167, 117503.	1.3	38
14	Fabrication and Characterization of UV Photodetectors with Cu-Doped ZnO Nanorod Arrays. Journal of the Electrochemical Society, 2020, 167, 027522.	1.3	27
15	Fast Detection and Flexible Microfluidic pH Sensors Based on Al-Doped ZnO Nanosheets with a Novel Morphology. ACS Omega, 2019, 4, 19847-19855.	1.6	27
16	Enhanced Detection of Ethanol in a Humid Ambient Using Al ₂ O ₃ -Doped Cactus-Like ZnO Nanoflowers With Gold Nanoparticles. IEEE Transactions on Device and Materials Reliability, 2019, 19, 409-415.	1.5	4
17	High Density Novel Porous ZnO Nanosheets Based on a Microheater Chip for Ozone Sensors. IEEE Sensors Journal, 2018, 18, 5559-5565.	2.4	26
18	Application of ZnO micro rods on the composite photo-electrode of dye sensitized solar cells. Microsystem Technologies, 2018, 24, 285-289.	1.2	6

#	Article	IF	CITATIONS
19	A fusion algorithm of target dynamic information for asynchronous multi-sensors. Microsystem Technologies, 2018, 24, 3995-4005.	1.2	10
20	Annealing effect on electrical, nanomechanical and sensing properties of ZnO/Mo/ZnO nanofilms. Microsystem Technologies, 2018, 24, 4035-4041.	1.2	1
21	High Sensitivity of NO Gas Sensors Based on Novel Ag-Doped ZnO Nanoflowers Enhanced with a UV Light-Emitting Diode. ACS Omega, 2018, 3, 13798-13807.	1.6	92
22	Fabrication of MEMS Electronics Devices Based on Fire-Like ZnO Nanosheets by Low-Temperature Hydrothermal Synthesis Technology. ECS Transactions, 2018, 85, 1489-1493.	0.3	0
23	Effects of TiO2 Nanoparticle Doping in Coconut-shell Carbon on the Properties of Supercapacitor. Sensors and Materials, 2018, , 645.	0.3	3
24	High-Sensitive Ultraviolet Photodetectors Based on ZnO Nanorods/CdS Heterostructures. Nanoscale Research Letters, 2017, 12, 31.	3.1	54
25	High Sensitivity ZnO Nanorod-Based Flexible Photodetectors Enhanced by CdSe/ZnS Core-Shell Quantum Dots. IEEE Sensors Journal, 2017, 17, 3710-3713.	2.4	7
26	Synthesis of Ga-Doped ZnO Nanorods by Hydrothermal Method and Their Application to Ultraviolet Photodetector. Inventions, 2016, 1, 3.	1.3	15
27	Nonvolatile Resistance Random Access Memory Devices Based on ZnO Nanorod Arrays. Smart Science, 2015, 3, 7-9.	1.9	2
28	Applications of Advanced Nanomaterials to Microelectronic and Photonic Devices. Journal of Nanomaterials, 2015, 2015, 1-1.	1.5	2
29	Noise Properties of Mg-Doped ZnO Nanorods Visible-Blind Photosensors. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 223-227.	1.9	24
30	UV Enhanced Field Emission Properties of Ga-Doped ZnO Nanosheets. IEEE Transactions on Electron Devices, 2015, 62, 2033-2037.	1.6	12
31	Ga-Doped ZnO Nanosheet Structure-Based Ultraviolet Photodetector by Low-Temperature Aqueous Solution Method. IEEE Transactions on Electron Devices, 2015, 62, 2924-2927.	1.6	30
32	Effects of gold nanoparticles inlaid in the photo-electrode on the properties of dye-sensitized solar cells. Microelectronic Engineering, 2015, 148, 29-33.	1.1	5
33	Red-Shift Effect and Sensitive Responsivity of MoS2/ZnO Flexible Photodetectors. Nanoscale Research Letters, 2015, 10, 443.	3.1	29
34	High-Efficient Ultraviolet Photodetectors Based on TiO ₂ /Ag/TiO ₂ Multilayer Films. IEEE Sensors Journal, 2015, 15, 762-765.	2.4	13
35	Enhanced Field Emission Properties of Ga-Doped ZnO Nanosheets by using an Aqueous Solution at Room Temperature. IEEE Transactions on Electron Devices, 2014, 61, 4192-4196.	1.6	15
36	Nanomaterials for Sensor Device Applications. Journal of Nanomaterials, 2014, 2014, 1-1.	1.5	1

#	Article	IF	CITATIONS
37	Fabrication of Hybrid Organic Photovoltaic Devices Using Electrostatic Spray Method. International Journal of Photoenergy, 2014, 2014, 1-5.	1.4	4
38	Nanostructured Materials for Microelectronic Applications. Advances in Materials Science and Engineering, 2014, 2014, 1-1.	1.0	1
39	Characteristics of TiO <inf>2</inf> metal-semiconductor-metal photodetectors with O <inf>2</inf> plasma treatment. , 2014, , .		1
40	Characterization of photovoltaics with In2S3 nanoflakes/p-Si heterojunction. Nanoscale Research Letters, 2014, 9, 32.	3.1	45
41	Optical properties of yellow-light-emitting LiZnVO4:Eu3+ phosphor prepared by sol–gel method. Journal of Sol-Gel Science and Technology, 2014, 69, 299-302.	1.1	6
42	UV Enhanced Field Emission Performance of Mg-Doped ZnO Nanorods. IEEE Transactions on Electron Devices, 2014, 61, 1541-1545.	1.6	26
43	Visible-Blind Photodetectors With Mg-Doped ZnO Nanorods. IEEE Photonics Technology Letters, 2014, 26, 645-648.	1.3	34
44	A textured SiO ₂ antireflection layer for efficient organic solar cells. Surface Topography: Metrology and Properties, 2014, 2, 035005.	0.9	1
45	Preparation of ZnS microdisks using chemical bath deposition and ZnS/p-Si heterojunction solar cells. Journal of Physics and Chemistry of Solids, 2013, 74, 1403-1407.	1.9	17
46	Morphology and optical performance of graphene-doped organic photovoltaic cells. Microsystem Technologies, 2013, 19, 1781-1785.	1.2	1
47	Annealing effect and photovoltaic properties of nano-ZnS/textured p-Si heterojunction. Nanoscale Research Letters, 2013, 8, 470.	3.1	16
48	Surface plasma resonant effect of gold nanoparticles on the photoelectrodes of dye-sensitized solar cells. Nanoscale Research Letters, 2013, 8, 450.	3.1	30
49	Low-Frequency Noise Characteristics of ZnO Nanorods Schottky Barrier Photodetectors. IEEE Sensors Journal, 2013, 13, 2115-2119.	2.4	26
50	Characteristics of Flexible Thin-Film Transistors With ZnO Channels. IEEE Sensors Journal, 2013, 13, 4940-4943.	2.4	17
51	TiO ₂ -Based Ultraviolet Photodetectors. Integrated Ferroelectrics, 2013, 143, 65-70.	0.3	8
52	Nanotechnology for Electrooptical and Photovoltaic Devices. International Journal of Photoenergy, 2013, 2013, 1-1.	1.4	1
53	Visible Photodetectors Based on Organic-Inorganic Hybrids Using Electrostatic Spraying Technology. Smart Science, 2013, 1, 108-112.	1.9	1

54 Characteristics of UV photosensors with TiO2 nanorods. , 2013, , 99-101.

0

#	Article	IF	CITATIONS
55	Nanodiamonds Embedded in P3HT:PCBM for Enhancing Efficiency and Reliability of Hybrid Photovoltaics. Electrochemical and Solid-State Letters, 2012, 15, K27.	2.2	8
56	Effects of different shaped gold nanoparticles on the photoelectrode of dye-sensitized solar cells. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2012, 226, 123-128.	0.1	0
57	Effect of TiO2 nanotubes with TiCl4 treatment on the photoelectrode of dye-sensitized solar cells. Nanoscale Research Letters, 2012, 7, 579.	3.1	20
58	Characterization of self-assembled ordered ZnO nanowire networks applied to photodetection. Microelectronic Engineering, 2012, 100, 16-19.	1.1	5
59	Size effect of nanodiamonds on P3HT:PCBM heterojunction solar cells. Electrochemistry Communications, 2012, 18, 4-7.	2.3	26
60	Optical characteristics of LiZnVO4 green phosphor at low temperature preparation. Materials Letters, 2012, 70, 163-166.	1.3	13
61	ZnO thin film with nanorod arrays applied to fluid sensor. Ultrasonics, 2012, 52, 747-752.	2.1	12
62	Effect of nanocrystalline TiO <inf>2</inf> scattering layer on the photoelectrode of dye-sensitized solar cells. , 2011, , .		0
63	Semitransparent Field-Effect Transistors Based on ZnO Nanowire Networks. IEEE Electron Device Letters, 2011, 32, 533-535.	2.2	26
64	Electrical and Photosensivity Characteristics of Hybrid/Composite ZnO Nanorod Transistors. IEEE Electron Device Letters, 2011, 32, 1558-1560.	2.2	0
65	Photosensitivity of Field-Effect Transistors Based on ZnO Nanowire Networks. IEEE Electron Device Letters, 2011, 32, 339-341.	2.2	7
66	Characteristics of photodetectors with TiO <inf>2</inf> nanorod arrays. , 2011, , .		1
67	Ultraviolet photodetectors based on MgZnO thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, 03A118.	0.9	15
68	MgZnO Nanorod Homojunction Photodetectors for Solar-Blind Detection. Electrochemical and Solid-State Letters, 2011, 14, J55.	2.2	13
69	Photoelectrical and Noise Characteristics of ZnO Nanowire Networks Photosensor. IEEE Sensors Journal, 2011, 11, 1173-1177.	2.4	16
70	Structural and Magnetic Properties of CoPt@Au Core-Shell Nanoparticles Prepared Under Ambient Pressure. Ferroelectrics, 2011, 421, 37-42.	0.3	0
71	Novel photoluminescent properties of LiGaO2 nanoflakes. Journal of Alloys and Compounds, 2011, 509, 7684-7687.	2.8	7
72	Nanomechanical properties of array TiO2 nanotubes. Microporous and Mesoporous Materials, 2011, 145, 87-92.	2.2	43

#	Article	IF	CITATIONS
73	Photoluminescence and preparation of ZnNb2O6 doped with Eu3+ and Tm3+ nanocrystals for solar cell. Materials Chemistry and Physics, 2011, 130, 1187-1190.	2.0	11
74	Transparent ZnO Nanowire-Network Ultraviolet Photosensor. IEEE Transactions on Electron Devices, 2011, 58, 2036-2040.	1.6	24
75	High temperature characteristics of ZnO-based MOS-FETs with a photochemical vapor deposition SiO2 gate dielectric. Journal of Physics and Chemistry of Solids, 2011, 72, 147-149.	1.9	11
76	Applications of vertically oriented TiO2 micro-pillars array on the electrode of dye-sensitized solar cell. Journal of Physics and Chemistry of Solids, 2011, 72, 653-656.	1.9	4
77	Thermally stable Ir/n-ZnO Schottky diodes. Microelectronic Engineering, 2011, 88, 113-116.	1.1	19
78	Effect of Oxygen Plasma Treatment on Characteristics of TiO\$_{2}\$ Photodetectors. IEEE Sensors Journal, 2011, 11, 3031-3035.	2.4	17
79	TiO2-Based Thin Film Transistors with Amorphous and Anatase Channel Layer. Journal of the Electrochemical Society, 2011, 158, H609.	1.3	48
80	Photoconductive Gain and Low-Frequency Noise Characteristics of ZnO Nanorods. Electrochemical and Solid-State Letters, 2011, 14, J13.	2.2	9
81	Structural, Electromechanical and Optical Characterization of ZnO Nanorods. Nanoscience and Nanotechnology Letters, 2011, 3, 468-471.	0.4	2
82	Preparation and characteristics of hybrid ZnO-polymer solar cells. Journal of Materials Science, 2010, 45, 3266-3269.	1.7	57
83	Measurements of dielectric properties of TiO2 thin films at microwave frequencies using an extended cavity perturbation technique. Journal of Materials Science: Materials in Electronics, 2010, 21, 817-821.	1.1	11
84	Synthesis and luminescent properties of ZnNb2O6 nanocrystals for solar cell. Materials Letters, 2010, 64, 2563-2565.	1.3	25
85	Structural and optical properties of ZnO nanorods grown on MgxZn1â^'xO buffer layers. Applied Surface Science, 2010, 256, 2138-2142.	3.1	6
86	Love wave ultraviolet photodetector using ZnO nanorods synthesized on 90°-rotated ST-cut (42°45′) quartz. Sensors and Actuators A: Physical, 2010, 161, 6-11.	2.0	9
87	Preparation and luminescent characteristic of Li3NbO4 nanophosphor. Journal of Luminescence, 2010, 130, 1863-1865.	1.5	21
88	Characterization of UV photodetectors with MgxZn1â^'xO thin films. Microelectronic Engineering, 2010, 87, 1777-1780.	1.1	6
89	Thin film transistors based on TiO2 fabricated by using radio-frequency magnetron sputtering. Journal of Physics and Chemistry of Solids, 2010, 71, 1760-1762.	1.9	5
90	Characteristic Improvements of ZnO-Based Metal–Semiconductor–Metal Photodetector on Flexible Substrate with ZnO Cap Layer. Japanese Journal of Applied Physics, 2010, 49, 052201.	0.8	27

#	Article	IF	CITATIONS
91	FABRICATION AND CHARACTERISTICS OF SILICON MICRO-TIP ARRAYS. International Journal of Modern Physics B, 2010, 24, 5601-5611.	1.0	3
92	OPTICAL CHARACTERIZATION OF ZnO NANOROD ARRAYS GROWN FROM SOLUTION. International Journal of Nanoscience, 2010, 09, 447-451.	0.4	1
93	Ultraviolet ZnO Nanorod Photosensors. Langmuir, 2010, 26, 603-606.	1.6	182
94	ZnO Nanobridge Array UV Photodetectors. Journal of Physical Chemistry C, 2010, 114, 3204-3208.	1.5	77
95	Structural and Optoelectronic Characteristics of Well-Aligned ZnO Nanorod Arrays for Photodiodes. Journal of Nanoelectronics and Optoelectronics, 2010, 5, 295-299.	0.1	3
96	Preparation and Characteristics of Flexible Nanorod-Based Photodetectors. Journal of Nanoelectronics and Optoelectronics, 2010, 5, 300-303.	0.1	6
97	Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays. Applied Physics Letters, 2009, 94, .	1.5	184
98	Application of TiO2 nano-particles on the electrode of dye-sensitized solar cells. Journal of Physics and Chemistry of Solids, 2009, 70, 472-476.	1.9	42
99	Effect of growth temperature on photoluminescence and piezoelectric characteristics of ZnO nanowires. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 158, 75-78.	1.7	26
100	Grain size effect of nanocrystalline ZnO on characteristics of dye-sensitized solar cells. Microelectronics Journal, 2009, 40, 50-52.	1.1	5
101	Photoluminescence characteristics of ZnO doped with Eu3+ powders. Journal of Physics and Chemistry of Solids, 2009, 70, 1015-1018.	1.9	35
102	Effect of seed layer on the growth of well-aligned ZnO nanowires. Journal of Physics and Chemistry of Solids, 2009, 70, 1359-1362.	1.9	107
103	A ZnO-based MOSFET with a photo-CVD SiO2gate oxide. Semiconductor Science and Technology, 2009, 24, 035010.	1.0	4
104	Nanoscratch behavior of multi-layered films using molecular dynamics. Applied Physics A: Materials Science and Processing, 2008, 90, 753-758.	1.1	23
105	Nitride-based light-emitter and photodiode dual function devices with InGaN/GaN multiple quantum dot structures. Journal of Crystal Growth, 2008, 310, 2476-2479.	0.7	16
106	Structural and luminescent properties of Mg4Nb2O9 nanocrystals. Journal of Crystal Growth, 2008, 310, 3331-3334.	0.7	15
107	Effects of different buffer layers in flexible organic light-emitting diodes. Journal of Physics and Chemistry of Solids, 2008, 69, 764-768.	1.9	17
108	Characteristics of III-nitride MSM photodiodes with SAQDs. Journal of Physics and Chemistry of Solids, 2008, 69, 724-726.	1.9	0

Liang-Wen Ji

#	Article	IF	CITATIONS
109	The crystallization and physical properties of Al-doped ZnO nanoparticles. Applied Surface Science, 2008, 254, 5791-5795.	3.1	205
110	Luminescent and structural properties of MgNb2O6 nanocrystals. Current Opinion in Solid State and Materials Science, 2008, 12, 51-54.	5.6	28
111	MOVPE-Grown Ultrasmall Self-Organized InGaN Nanotips. IEEE Nanotechnology Magazine, 2008, 7, 1-4.	1.1	6
112	ZnO Schottky diodes with iridium contact electrodes. Semiconductor Science and Technology, 2008, 23, 085016.	1.0	25
113	ZnO Metal-Semiconductor-Metal Ultraviolet Photodiodes with Au Contacts. Journal of the Electrochemical Society, 2007, 154, H26.	1.3	31
114	ZnO metal–semiconductor–metal ultraviolet photodetectors with Iridium contact electrodes. IET Optoelectronics, 2007, 1, 135.	1.8	12
115	Buckling characterization of vertical ZnO nanowires using nanoindentation. Applied Physics Letters, 2007, 90, 033109.	1.5	80
116	Characterization of ZnO metal–semiconductor–metal ultraviolet photodiodes with palladium contact electrodes. Semiconductor Science and Technology, 2007, 22, 299-299.	1.0	0
117	Nanoscale mechanical characteristics of vertical ZnO nanowires grown on ZnO:Ga/glass templates. Nanotechnology, 2007, 18, 225603.	1.3	54
118	Growth Of ZnO Nanorods by Hydrotherothermal Method Under Different Temperatures. , 2007, , .		8
119	ZnO ultraviolet photodiodes with Pd contact electrodes. Acta Materialia, 2007, 55, 329-333.	3.8	55
120	Fractal analysis of InGaN self-assemble quantum dots grown by MOCVD. Microelectronics Journal, 2007, 38, 905-909.	1.1	7
121	High brightness OLED with dual emitting layers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 445-446, 509-512.	2.6	11
122	Nanoindentation of vertical ZnO nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 39, 240-243.	1.3	8
123	Superconductivity and calorimetric studies of Pr1.85Ce0.15CuO4+Î′ under different annealing conditions. Journal of Physics and Chemistry of Solids, 2007, 68, 1390-1395.	1.9	0
124	Structure and luminescent properties of LaNbO4 synthesized by sol–gel process. Journal of Luminescence, 2007, 126, 866-870.	1.5	69
125	Effects of nitridation time on top-emission inverted organic light-emitting diodes. Journal of Crystal Growth, 2007, 305, 109-112.	0.7	1
126	Characteristics of III-nitride photodiodes with self-assembled quantum dots. Materials Letters, 2007, 61, 1619-1621.	1.3	4

#	Article	IF	CITATIONS
127	Physical Behavior of Nanoporous Anodic Alumina Using Nanoindentation and Microhardness Tests. Nanoscale Research Letters, 2007, 2, .	3.1	27
128	ZnO-based MIS photodetectors. Sensors and Actuators A: Physical, 2007, 135, 529-533.	2.0	47
129	Effects of Nitridation Time on Top-emission Inverted Organic Light Emitting Diode. Progress in Electromagnetics Research Symposium: [proceedings] Progress in Electromagnetics Research Symposium, 2007, 3, 821-824.	0.4	1
130	Development of A four-Degrees-of-Freedom Diffraction Sensor. Journal of Physics: Conference Series, 2006, 48, 196-201.	0.3	2
131	Effect of annealing on the structural and mechanical properties of Ba0.7Sr0.3TiO3 thin films. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 426, 157-161.	2.6	20
132	Atomistic modeling of dislocation activity in nanoindented GaAs. Applied Surface Science, 2006, 253, 833-840.	3.1	13
133	Effects of strain on the characteristics of InGaN–GaN multiple quantum-dot blue light emitting diodes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 355, 118-121.	0.9	19
134	ZnO metal–semiconductor–metal ultraviolet sensors with various contact electrodes. Journal of Crystal Growth, 2006, 293, 43-47.	0.7	120
135	High bright white organic light-emitting diode based on mixing orange and blue emission. Journal of Crystal Growth, 2006, 293, 48-51.	0.7	12
136	Nanomechanical characteristics of BaxSr1â ̈xTiO3 thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 131, 281-284.	1.7	12
137	Characterization of ZnO metal–semiconductor–metal ultraviolet photodiodes with palladium contact electrodes. Semiconductor Science and Technology, 2006, 21, 1507-1511.	1.0	26
138	GaN nanocolumns formed by inductively coupled plasmas etching. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 28, 115-120.	1.3	14
139	InGaN/GaN MQD p–n junction photodiodes. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 30, 13-16.	1.3	5
140	Self-formation of GaN hollow nanocolumns by inductively coupled plasma etching. Applied Physics A: Materials Science and Processing, 2005, 80, 1607-1610.	1.1	27
141	Ultra small self-organized nitride nanotips. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2496.	1.6	7
142	Buckling instabilities in GaN nanotubes under uniaxial compression. Nanotechnology, 2005, 16, 2203-2208.	1.3	31
143	InGaN Metal–Semiconductor–Metal Photodiodes with Nanostructures. Japanese Journal of Applied Physics, 2004, 43, 518-521.	0.8	3
144	Nitride-based light-emitting diodes with InGaNâ^•GaN SAQD active layers. IET Circuits, Devices and Systems, 2004, 151, 486.	0.6	2

#	Article	IF	CITATIONS
145	Growth of ultra small self-assembled InGaN nanotips. Journal of Crystal Growth, 2004, 263, 63-67.	0.7	10
146	InGaN/GaN multi-quantum dot light-emitting diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2405-2408.	0.8	2
147	Growth of InGaN self-assembled quantum dots and their application to photodiodes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 792.	0.9	5
148	InGaN/GaN blue light-emitting diodes with self-assembled quantum dots. Semiconductor Science and Technology, 2004, 19, 389-392.	1.0	27
149	InGaN quantum dot photodetectors. Solid-State Electronics, 2003, 47, 1753-1756.	0.8	24
150	Growth of nanoscale InGaN self-assembled quantum dots. Journal of Crystal Growth, 2003, 249, 144-148.	0.7	60
151	A novel method to realize InGaN self-assembled quantum dots by metalorganic chemical vapor deposition. Materials Letters, 2003, 57, 4218-4221.	1.3	26
152	Quantum dot devices for optoelectronics applications. , 0, , .		0
153	Study of Different TiO ₂ Electrode Structures on Dye-Sensitized Solar Cell. Key Engineering Materials, 0, 368-372, 1716-1719.	0.4	9
154	A Study on the Computer Simulation for the Fractal Growth of Semiconductor Thin Films. Applied Mechanics and Materials, 0, 311, 451-455.	0.2	0
155	Fabrication of Flexible Dye-Sensitized Solar Cells with Double Sensitized Layers. Applied Mechanics and Materials, 0, 311, 435-440.	0.2	0