Kotaro Sasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8365931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An efficient and durable anode for ammonia protonic ceramic fuel cells. Energy and Environmental Science, 2022, 15, 287-295.	30.8	64
2	Modulation of the coordination environment enhances the electrocatalytic efficiency of Mo single atoms toward water splitting. Journal of Materials Chemistry A, 2022, 10, 8784-8797.	10.3	17
3	One-Step Facile Synthesis of High-Activity Nitrogen-Doped PtNiN Oxygen Reduction Catalyst. ACS Applied Energy Materials, 2022, 5, 5245-5255.	5.1	11
4	Advanced Pt-Based Core–Shell Electrocatalysts for Fuel Cell Cathodes. Accounts of Chemical Research, 2022, 55, 1226-1236.	15.6	65
5	Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells. Nature Communications, 2022, 13, 2207.	12.8	65
6	Surface Regulating of a Doubleâ€Perovskite Electrode for Protonic Ceramic Fuel Cells to Enhance Oxygen Reduction Activity and Contaminants Poisoning Tolerance. Advanced Energy Materials, 2022, 12, .	19.5	24
7	Nitrogen-Doped PtNi Catalysts on Polybenzimidazole-Functionalized Carbon Support for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2022, 14, 26814-26823.	8.0	5
8	Yttrium-based Double Perovskite Nanorods for Electrocatalysis. ACS Applied Materials & Interfaces, 2022, 14, 30914-30926.	8.0	2
9	Investigating corrosion behavior of Ni and Ni-20Cr in molten ZnCl2. Corrosion Science, 2021, 179, 109105.	6.6	22
10	Rhombohedral Ordered Intermetallic Nanocatalyst Boosts the Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 184-192.	11.2	51
11	High Pressure Nitrogen-Infused Ultrastable Fuel Cell Catalyst for Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 5525-5531.	11.2	22
12	Determining oxidation states of transition metals in molten salt corrosion using electron energy loss spectroscopy. Scripta Materialia, 2021, 197, 113790.	5.2	15
13	A Cu ₂ Oâ€derived Polymeric Carbon Nitride Heterostructured Catalyst for the Electrochemical Reduction of Carbon Dioxide to Ethylene. ChemSusChem, 2021, 14, 3190-3197.	6.8	18
14	An Efficient Bifunctional Air Electrode for Reversible Protonic Ceramic Electrochemical Cells. Advanced Functional Materials, 2021, 31, 2105386.	14.9	66
15	<i>In Situ</i> X-ray Absorption Spectroscopy of PtNi-Nanowire/Vulcan XC-72R under Oxygen Reduction Reaction in Alkaline Media. ACS Omega, 2021, 6, 17203-17216.	3.5	5
16	H ₂ O ₂ production on a carbon cathode loaded with a nickel carbonate catalyst and on an oxide photoanode without an external bias. RSC Advances, 2021, 11, 11224-11232.	3.6	2
17	Twinning Enhances Efficiencies of Metallic Catalysts toward Electrolytic Water Splitting. Advanced Energy Materials, 2021, 11, 2101827.	19.5	24

18 Twinning Enhances Efficiencies of Metallic Catalysts toward Electrolytic Water Splitting (Adv.) Tj ETQq0 0 0 rgBT /Qyerlock 19 Tf 50 62

Kotaro Sasaki

#	Article	IF	CITATIONS
19	High-Performance Nitrogen-Doped Intermetallic PtNi Catalyst for the Oxygen Reduction Reaction. ACS Catalysis, 2020, 10, 10637-10645.	11.2	98
20	Structure and dynamics of the molten alkali-chloride salts from an X-ray, simulation, and rate theory perspective. Physical Chemistry Chemical Physics, 2020, 22, 22900-22917.	2.8	22
21	Designing high performance Pt monolayer core–shell electrocatalysts for fuel cells. Current Opinion in Electrochemistry, 2020, 21, 368-375.	4.8	35
22	Revealing 3D Morphological and Chemical Evolution Mechanisms of Metals in Molten Salt by Multimodal Microscopy. ACS Applied Materials & Interfaces, 2020, 12, 17321-17333.	8.0	20
23	Enhancing Oxygen Reduction Performance of Pt Monolayer Catalysts by Pd(111) Nanosheets on WNi Substrates. ACS Catalysis, 2020, 10, 4290-4298.	11.2	30
24	Enhancing ORR Performance of Bimetallic PdAg Electrocatalysts by Designing Interactions between Pd and Ag. ACS Applied Energy Materials, 2020, 3, 2342-2349.	5.1	36
25	Quantitative Nanoscale 3D Imaging of Intergranular Corrosion of 304ÂStainless Steel Using Hard X-Ray Nanoprobe. Journal of the Electrochemical Society, 2019, 166, C3320-C3325.	2.9	6
26	Kern‧chale‧trukturierung rein metallischer Aerogele für eine hocheffiziente Nutzung von Platin für die Sauerstoffreduktion. Angewandte Chemie, 2018, 130, 3014-3018.	2.0	7
27	Core–Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2018, 57, 2963-2966.	13.8	154
28	Determination of Hydrogen Oxidation Reaction Mechanism Based on Ptâ^'H _{ad} Energetics in Alkaline Electrolyte. Journal of the Electrochemical Society, 2018, 165, J3355-J3362.	2.9	38
29	Highly Dispersed Carbon Supported PdNiMo Core with Pt Monolayer Shell Electrocatalysts for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2018, 165, J3295-J3300.	2.9	8
30	Correlating the electrocatalytic stability of platinum monolayer catalysts with their structural evolution in the oxygen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 20725-20736.	10.3	22
31	Determination of Single- and Multi-Component Nanoparticle Sizes by X-ray Absorption Spectroscopy. Journal of the Electrochemical Society, 2018, 165, J3222-J3230.	2.9	34
32	Au-Doped Stable L1 ₀ Structured Platinum Cobalt Ordered Intermetallic Nanoparticle Catalysts for Enhanced Electrocatalysis. ACS Applied Energy Materials, 2018, 1, 3771-3777.	5.1	16
33	Modification of BiVO ₄ /WO ₃ composite photoelectrodes with Al ₂ O ₃ <i>via</i> chemical vapor deposition for highly efficient oxidative H ₂ O ₂ production from H ₂ O. Sustainable Energy and Fuels, 2018,	4.9	44
34	(Invite) Insights in Measuring Particle Size of Multiatomic Nanoparticles By XAS. ECS Meeting Abstracts, 2018, , .	0.0	0
35	Janus structured Pt–FeNC nanoparticles as a catalyst for the oxygen reduction reaction. Chemical Communications, 2017, 53, 1660-1663.	4.1	46
36	Design of efficient Pt-based electrocatalysts through characterization by X-ray absorption spectroscopy. Frontiers in Energy, 2017, 11, 236-244.	2.3	1

Kotaro Sasaki

#	Article	IF	CITATIONS
37	Enhancing Electrocatalytic Performance of Bifunctional Cobalt–Manganeseâ€Oxynitride Nanocatalysts on Graphene. ChemSusChem, 2017, 10, 68-73.	6.8	28
38	Increasing Stability and Activity of Core–Shell Catalysts by Preferential Segregation of Oxide on Edges and Vertexes: Oxygen Reduction on Ti–Au@Pt/C. Journal of the American Chemical Society, 2016, 138, 9294-9300.	13.7	83
39	Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction. Nano Energy, 2016, 29, 261-267.	16.0	61
40	Evaluation of Oxygen Reduction Activity by the Thin-Film Rotating Disk Electrode Methodology: the Effects of Potentiodynamic Parameters. Electrocatalysis, 2016, 7, 305-316.	3.0	9
41	Oxygen Reduction Kinetics on Pt Monolayer Shell Highly Affected by the Structure of Bimetallic AuNi Cores. Chemistry of Materials, 2016, 28, 5274-5281.	6.7	46
42	Enhancement of oxygen reduction reaction activities by Pt nanoclusters decorated on ordered mesoporous porphyrinic carbons. Journal of Materials Chemistry A, 2016, 4, 5869-5876.	10.3	17
43	Synchrotron-Based In Situ Characterization of Carbon-Supported Platinum and Platinum Monolayer Electrocatalysts. ACS Catalysis, 2016, 6, 69-76.	11.2	100
44	X-Ray Absorption Spectroscopic Characterization of Nanomaterial Catalysts in Electrochemistry and Fuel Cells. , 2016, , 315-365.		2
45	Nanoparticle size evaluation of catalysts by EXAFS: Advantages and limitations. Materials Protection, 2016, 57, 101-109.	0.9	33
46	Pt Monolayer Shell on Nitrided Alloy Core—A Path to Highly Stable Oxygen Reduction Catalyst. Catalysts, 2015, 5, 1321-1332.	3.5	33
47	Biomass-derived high-performance tungsten-based electrocatalysts on graphene for hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 18572-18577.	10.3	43
48	Enhancement of the oxygen reduction on nitride stabilized pt-M (M=Fe, Co, and Ni) core–shell nanoparticle electrocatalysts. Nano Energy, 2015, 13, 442-449.	16.0	104
49	In Situ Probing of the Active Site Geometry of Ultrathin Nanowires for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 12597-12609.	13.7	46
50	Cerium oxide as a promoter for the electro-oxidation reaction of ethanol: in situ XAFS characterization of the Pt nanoparticles supported on CeO ₂ nanoparticles and nanorods. Physical Chemistry Chemical Physics, 2015, 17, 32251-32256.	2.8	6
51	EDTA-Ce(III) Modified Pt Vulcan XC-72 Catalyst Synthesis for Methanol Oxidation in Acid Solution. Electrocatalysis, 2014, 5, 50-61.	3.0	7
52	Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction. Nature Communications, 2014, 5, 5185.	12.8	134
53	Tungsten Carbide–Nitride on Graphene Nanoplatelets as a Durable Hydrogen Evolution Electrocatalyst. ChemSusChem, 2014, 7, 2414-2418.	6.8	101
54	Core–shell, hollow-structured iridium–nickel nitride nanoparticles for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2014, 2, 591-594.	10.3	83

KOTARO SASAKI

#	Article	IF	CITATIONS
55	Pt monolayer on Au-stabilized PdNi core–shell nanoparticles for oxygen reduction reaction. Electrochimica Acta, 2013, 110, 267-272.	5.2	70
56	Enhanced Oxygen Reduction Activity of IrCu Core Platinum Monolayer Shell Nano-electrocatalysts. Topics in Catalysis, 2013, 56, 1059-1064.	2.8	17
57	Tuning the Catalytic Activity of Ru@Pt Core–Shell Nanoparticles for the Oxygen Reduction Reaction by Varying the Shell Thickness. Journal of Physical Chemistry C, 2013, 117, 1748-1753.	3.1	140
58	Biomass-derived electrocatalytic composites for hydrogen evolution. Energy and Environmental Science, 2013, 6, 1818.	30.8	343
59	Catalytic Activity of Platinum Monolayer on Iridium and Rhenium Alloy Nanoparticles for the Oxygen Reduction Reaction. ACS Catalysis, 2012, 2, 817-824.	11.2	94
60	Increasing Pt oxygen reduction reaction activity and durability with a carbon-doped TiO2 nanocoating catalyst support. Journal of Materials Chemistry, 2012, 22, 16824.	6.7	91
61	Nitride Stabilized PtNi Core–Shell Nanocatalyst for high Oxygen Reduction Activity. Nano Letters, 2012, 12, 6266-6271.	9.1	213
62	Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nature Communications, 2012, 3, 1115.	12.8	377
63	Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction. Energy and Environmental Science, 2012, 5, 5297-5304.	30.8	156
64	Hydrogenâ€Evolution Catalysts Based on Nonâ€Noble Metal Nickel–Molybdenum Nitride Nanosheets. Angewandte Chemie - International Edition, 2012, 51, 6131-6135.	13.8	1,174
65	Carbon-Supported IrNi Core–Shell Nanoparticles: Synthesis, Characterization, and Catalytic Activity. Journal of Physical Chemistry C, 2011, 115, 9894-9902.	3.1	58
66	Platinum Supported on NbRu _{<i>y</i>} O _{<i>z</i>} as Electrocatalyst for Ethanol Oxidation in Acid and Alkaline Fuel Cells. Journal of Physical Chemistry C, 2011, 115, 3043-3056.	3.1	43
67	Platinum Monolayer on IrFe Core–Shell Nanoparticle Electrocatalysts for the Oxygen Reduction Reaction. Electrocatalysis, 2011, 2, 134-140.	3.0	31
68	Coreâ€Protected Platinum Monolayer Shell Highâ€Stability Electrocatalysts for Fuel ell Cathodes. Angewandte Chemie - International Edition, 2010, 49, 8602-8607.	13.8	554
69	Role of Surface Steps of Pt Nanoparticles on the Electrochemical Activity for Oxygen Reduction. Journal of Physical Chemistry Letters, 2010, 1, 1316-1320.	4.6	121
70	Gram-Scale-Synthesized Pd ₂ Co-Supported Pt Monolayer Electrocatalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2010, 114, 8950-8957.	3.1	54
71	Dissolution and Stabilization of Platinum in Oxygen Cathodes. , 2009, , 7-27.		50
72	Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis. Topics in Catalysis, 2007, 46, 276-284.	2.8	202

#	Article	IF	CITATIONS
73	Platinum submonolayer-monolayer electrocatalysis: An electrochemical and X-ray absorption spectroscopy study. Research on Chemical Intermediates, 2006, 32, 543-559.	2.7	19
74	Mixed-Metal Pt Monolayer Electrocatalysts for Enhanced Oxygen Reduction Kinetics. Journal of the American Chemical Society, 2005, 127, 12480-12481.	13.7	556