
Qingbo Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8365923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The binding of autotaxin to integrins mediates hyperhomocysteinemia-potentiated platelet activation and thrombosis in mice and humans. Blood Advances, 2022, 6, 46-61.	5.2	9
2	Endothelial repair by stem and progenitor cells. Journal of Molecular and Cellular Cardiology, 2022, 163, 133-146.	1.9	19
3	Unspliced XBP1 Counteracts β-Catenin to Inhibit Vascular Calcification. Circulation Research, 2022, 130, 213-229.	4.5	27
4	Single-cell RNA sequencing reveals B cell-T cell interactions in vascular adventitia of hyperhomocysteinemia-accelerated atherosclerosis. Protein and Cell, 2022, 13, 540-547.	11.0	10
5	Nitric oxide improves regeneration and prevents calcification in bio-hybrid vascular grafts via regulation of vascular stem/progenitor cells. Cell Reports, 2022, 39, 110981.	6.4	17
6	Stem/Progenitor Cells and Pulmonary Arterial Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 167-178.	2.4	12
7	Single-cell RNA sequencing reveals cell type- and artery type-specific vascular remodelling in male spontaneously hypertensive rats. Cardiovascular Research, 2021, 117, 1202-1216.	3.8	28
8	NSun2 regulates aneurysm formation by promoting autotaxin expression and T cell recruitment. Cellular and Molecular Life Sciences, 2021, 78, 1709-1727.	5.4	17
9	Different Roles of Stem/Progenitor Cells in Vascular Remodeling. Antioxidants and Redox Signaling, 2021, 35, 192-203.	5.4	11
10	The Neutrophil-to-Lymphocyte Ratio Determines Clinical Efficacy of Corticosteroid Therapy in Patients with COVID-19. Cell Metabolism, 2021, 33, 258-269.e3.	16.2	87
11	Single-cell transcriptomics uncovers phenotypic alterations in the monocytes in a Chinese population with chronic cadmium exposure. Ecotoxicology and Environmental Safety, 2021, 211, 111881.	6.0	7
12	Perivascular tissue stem cells are crucial players in vascular disease. Free Radical Biology and Medicine, 2021, 165, 324-333.	2.9	3
13	Development and validation of a risk score using complete blood count to predict in-hospital mortality in COVID-19 patients. Med, 2021, 2, 435-447.e4.	4.4	20
14	Application of genetic cell-lineage tracing technology to study cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 2021, 156, 57-68.	1.9	3
15	Pharmacological inhibition of arachidonate 12-lipoxygenase ameliorates myocardial ischemia-reperfusion injury in multiple species. Cell Metabolism, 2021, 33, 2059-2075.e10.	16.2	35
16	Nonbone Marrow CD34 ⁺ Cells Are Crucial for Endothelial Repair of Injured Artery. Circulation Research, 2021, 129, e146-e165.	4.5	28
17	Resident stem cells in the heart. Medical Review, 2021, 1, 10-13.	1.2	3
18	A small molecule targeting ALOX12-ACC1 ameliorates nonalcoholic steatohepatitis in mice and macaques. Science Translational Medicine, 2021, 13, eabg8116.	12.4	30

#	Article	IF	CITATIONS
19	Multiple omics study identifies an interspecies conserved driver for nonalcoholic steatohepatitis. Science Translational Medicine, 2021, 13, eabg8117.	12.4	23
20	B cell-derived anti-beta 2 glycoprotein I antibody contributes to hyperhomocysteinaemia-aggravated abdominal aortic aneurysm. Cardiovascular Research, 2020, 116, 1897-1909.	3.8	16
21	Metformin Is Associated with Higher Incidence of Acidosis, but Not Mortality, in Individuals with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metabolism, 2020, 32, 537-547.e3.	16.2	116
22	Lymphatics in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e275-e283.	2.4	8
23	Redefining Cardiac Biomarkers in Predicting Mortality of Inpatients With COVID-19. Hypertension, 2020, 76, 1104-1112.	2.7	118
24	Hyaluronan promotes the regeneration of vascular smooth muscle with potent contractile function in rapidly biodegradable vascular grafts. Biomaterials, 2020, 257, 120226.	11.4	48
25	Impact of Local Alloimmunity and Recipient Cells in Transplant Arteriosclerosis. Circulation Research, 2020, 127, 974-993.	4.5	17
26	In-Hospital Use of Statins Is Associated with a Reduced Risk of Mortality among Individuals with COVID-19. Cell Metabolism, 2020, 32, 176-187.e4.	16.2	400
27	Comparative Impacts of ACE (Angiotensin-Converting Enzyme) Inhibitors Versus Angiotensin II Receptor Blockers on the Risk of COVID-19 Mortality. Hypertension, 2020, 76, e15-e17.	2.7	54
28	Single-cell gene profiling and lineage tracing analyses revealed novel mechanisms of endothelial repair by progenitors. Cellular and Molecular Life Sciences, 2020, 77, 5299-5320.	5.4	24
29	Reply. Journal of the American College of Cardiology, 2020, 76, 230-231.	2.8	0
30	Trajectories of Age-Related Arterial Stiffness in Chinese Men and Women. Journal of the American College of Cardiology, 2020, 75, 870-880.	2.8	94
31	Association of Inpatient Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers With Mortality Among Patients With Hypertension Hospitalized With COVID-19. Circulation Research, 2020, 126, 1671-1681.	4.5	948
32	Single-Cell RNA-Sequencing and Metabolomics Analyses Reveal the Contribution of Perivascular Adipose Tissue Stem Cells to Vascular Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2049-2066.	2.4	72
33	Patient-Specific iPSC Model of a Genetic Vascular Dementia Syndrome Reveals Failure of Mural Cells to Stabilize Capillary Structures. Stem Cell Reports, 2019, 13, 817-831.	4.8	38
34	Recipient c-Kit Lineage Cells Repopulate Smooth Muscle Cells of Transplant Arteriosclerosis in Mouse Models. Circulation Research, 2019, 125, 223-241.	4.5	56
35	Ion Channels and Vascular Diseases. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, e146-e156.	2.4	44
36	Protective Role of RNA Helicase DEAD-Box Protein 5 in Smooth Muscle Cell Proliferation and Vascular Remodeling. Circulation Research, 2019, 124, e84-e100.	4.5	21

#	Article	IF	CITATIONS
37	DKK3 (Dikkopf-3) Transdifferentiates Fibroblasts Into Functional Endothelial Cells—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 765-773.	2.4	19
38	Encapsulation of macrophages enhances their retention and angiogenic potential. Npj Regenerative Medicine, 2019, 4, 6.	5.2	14
39	Adventitial Cell Atlas of wt (Wild Type) and ApoE (Apolipoprotein E)-Deficient Mice Defined by Single-Cell RNA Sequencing. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1055-1071.	2.4	78
40	Smooth muscle cells differentiated from mesenchymal stem cells are regulated by microRNAs and suitable for vascular tissue grafts. Journal of Biological Chemistry, 2018, 293, 8089-8102.	3.4	58
41	DKK3 (Dickkopf 3) Alters Atherosclerotic Plaque Phenotype Involving Vascular Progenitor and Fibroblast Differentiation Into Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 425-437.	2.4	53
42	Vascular Stem/Progenitor Cell Migration and Differentiation in Atherosclerosis. Antioxidants and Redox Signaling, 2018, 29, 219-235.	5.4	35
43	Adventitial Sca1+ Cells Transduced With ETV2 Are Committed to the Endothelial Fate and Improve Vascular Remodeling After Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 232-244.	2.4	30
44	Role of Resident Stem Cells in Vessel Formation and Arteriosclerosis. Circulation Research, 2018, 122, 1608-1624.	4.5	92
45	Response of vascular mesenchymal stem/progenitor cells to hyperlipidemia. Cellular and Molecular Life Sciences, 2018, 75, 4079-4091.	5.4	13
46	Genetic lineage tracing analysis of c-kit+ stem/progenitor cells revealed a contribution to vascular injury-induced neointimal lesions. Journal of Molecular and Cellular Cardiology, 2018, 121, 277-286.	1.9	25
47	Binding of Dickkopf-3 to CXCR7 Enhances Vascular Progenitor Cell Migration and Degradable Graft Regeneration. Circulation Research, 2018, 123, 451-466.	4.5	34
48	Cartilage oligomeric matrix protein is a novel notch ligand driving embryonic stem cell differentiation towards the smooth muscle lineage. Journal of Molecular and Cellular Cardiology, 2018, 121, 69-80.	1.9	9
49	PKM2-dependent metabolic reprogramming in CD4+ T cells is crucial for hyperhomocysteinemia-accelerated atherosclerosis. Journal of Molecular Medicine, 2018, 96, 585-600.	3.9	56
50	Histone Deacetylase 7â€Đerived Peptides Play a Vital Role in Vascular Repair and Regeneration. Advanced Science, 2018, 5, 1800006.	11.2	24
51	Vascular Progenitors and Smooth Muscle Cells Chicken and Egg?. Circulation Research, 2017, 120, 246-248.	4.5	3
52	Homocysteine Activates B Cells via Regulating PKM2-Dependent Metabolic Reprogramming. Journal of Immunology, 2017, 198, 170-183.	0.8	55
53	Unspliced XBP1 Confers VSMC Homeostasis and Prevents Aortic Aneurysm Formation via FoxO4 Interaction. Circulation Research, 2017, 121, 1331-1345.	4.5	83
54	Leptin Induces Sca-1 ⁺ Progenitor Cell Migration Enhancing Neointimal Lesions in Vessel-Injury Mouse Models. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2114-2127.	2.4	27

Qіngbo Xu

#	Article	IF	CITATIONS
55	Novel Pathological Role of hnRNPA1 (Heterogeneous Nuclear Ribonucleoprotein A1) in Vascular Smooth Muscle Cell Function and Neointima Hyperplasia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2182-2194.	2.4	41
56	Differentiation and Application of Induced Pluripotent Stem Cell–Derived Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2026-2037.	2.4	40
57	Adventitial SCA-1 + Progenitor Cell Gene Sequencing Reveals the Mechanisms of Cell Migration in Response to Hyperlipidemia. Stem Cell Reports, 2017, 9, 681-696.	4.8	25
58	A Cytokine-Like Protein Dickkopf-Related Protein 3 Is Atheroprotective. Circulation, 2017, 136, 1022-1036.	1.6	47
59	Mesenchymal stem cells and vascular regeneration. Microcirculation, 2017, 24, e12324.	1.8	74
60	Preexisting endothelial cells mediate cardiac neovascularization after injury. Journal of Clinical Investigation, 2017, 127, 2968-2981.	8.2	146
61	Vascular Regeneration by Stem/Progenitor Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, e33-40.	2.4	25
62	Vascular Stem/Progenitor Cell Migration Induced by Smooth Muscle Cell-Derived Chemokine (C-C) Tj ETQq0 0 0 2016, 34, 2368-2380.	rgBT /Ove 3.2	rlock 10 Tf 50 50
63	Hyaluronan Is Crucial for Stem Cell Differentiation into Smooth Muscle Lineage. Stem Cells, 2016, 34, 1225-1238.	3.2	36
64	NSun2 Deficiency Protects Endothelium From Inflammation via mRNA Methylation of ICAM-1. Circulation Research, 2016, 118, 944-956.	4.5	63
65	Microsomal Prostaglandin E Synthase-1–Derived PGE ₂ Inhibits Vascular Smooth Muscle Cell Calcification. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 108-121.	2.4	23
66	Enzyme-functionalized vascular grafts catalyze in-situ release of nitric oxide from exogenous NO prodrug. Journal of Controlled Release, 2015, 210, 179-188.	9.9	79
67	Expression of Human Tissue Factor Pathway Inhibitor on Vascular Smooth Muscle Cells Inhibits Secretion of Macrophage Migration Inhibitory Factor and Attenuates Atherosclerosis in ApoE â^'/â^' Mice. Circulation, 2015, 131, 1350-1360.	1.6	36
68	Dickkopf Homolog 3 Induces Stem Cell Differentiation into Smooth Muscle Lineage via ATF6 Signalling. Journal of Biological Chemistry, 2015, 290, 19844-19852.	3.4	39
69	c-Kit+ progenitors generate vascular cells for tissue-engineered grafts through modulation of the Wnt/Klf4 pathway. Biomaterials, 2015, 60, 53-61.	11.4	29
70	XBP 1-Deficiency Abrogates Neointimal Lesion of Injured Vessels Via Cross Talk With the PDGF Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2134-2144.	2.4	40
71	Stem/Progenitor Cells in Vascular Regeneration. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1114-1119.	2.4	57
72	Role of Biomechanical Forces in Stem Cell Vascular Lineage Differentiation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 2184-2190.	2.4	60

#	Article	IF	CITATIONS
73	Unspliced X-box-binding Protein 1 (XBP1) Protects Endothelial Cells from Oxidative Stress through Interaction with Histone Deacetylase 3. Journal of Biological Chemistry, 2014, 289, 30625-30634.	3.4	76
74	Bidirectional cross-regulation between the endothelial nitric oxide synthase and β-catenin signalling pathways. Cardiovascular Research, 2014, 104, 116-126.	3.8	21
75	Endothelial Lineage Differentiation from Induced Pluripotent Stem Cells Is Regulated by MicroRNA-21 and Transforming Growth Factor β2 (TGF-β2) Pathways. Journal of Biological Chemistry, 2014, 289, 3383-3393.	3.4	87
76	Vascular Endothelial Cell Growth–Activated XBP1 Splicing in Endothelial Cells Is Crucial for Angiogenesis. Circulation, 2013, 127, 1712-1722.	1.6	105
77	Adventitial Stem Cells in Vein Grafts Display Multilineage Potential That Contributes to Neointimal Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1844-1851.	2.4	78
78	Smooth Muscle Cells Differentiated From Reprogrammed Embryonic Lung Fibroblasts Through DKK3 Signaling Are Potent for Tissue Engineering of Vascular Grafts. Circulation Research, 2013, 112, 1433-1443.	4.5	83
79	Sirolimus Stimulates Vascular Stem/Progenitor Cell Migration and Differentiation Into Smooth Muscle Cells via Epidermal Growth Factor Receptor/Extracellular Signal–Regulated Kinase/β-Catenin Signaling Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2397-2406.	2.4	40
80	Hyperhomocysteinemia Exaggerates Adventitial Inflammation and Angiotensin Ilâ^'Induced Abdominal Aortic Aneurysm in Mice. Circulation Research, 2012, 111, 1261-1273.	4.5	140
81	Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13793-13798.	7.1	235
82	Contribution of Stem Cells to Neointimal Formation of Decellularized Vessel Grafts in a Novel Mouse Model. American Journal of Pathology, 2012, 181, 362-373.	3.8	63
83	Resident vascular progenitor cells. Journal of Molecular and Cellular Cardiology, 2011, 50, 304-311.	1.9	128
84	Cartilage Oligomeric Matrix Protein Inhibits Vascular Smooth Muscle Calcification by Interacting With Bone Morphogenetic Protein-2. Circulation Research, 2011, 108, 917-928.	4.5	103
85	Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood, 2009, 114, 723-732.	1.4	262
86	Rapid Endothelial Turnover in Atherosclerosis-Prone Areas Coincides With Stem Cell Repair in Apolipoprotein E–Deficient Mice. Circulation, 2008, 117, 1856-1863.	1.6	159
87	Stem Cells and Transplant Arteriosclerosis. Circulation Research, 2008, 102, 1011-1024.	4.5	83
88	Stem cell-derived Sca-1 ⁺ progenitors differentiate into smooth muscle cells, which is mediated by collagen IV-integrin α ₁ /β ₁ /α _v and PDGF receptor pathways. American Journal of Physiology - Cell Physiology, 2007, 292, C342-C352.	4.6	111
89	Characterisation of progenitor cells in human atherosclerotic vessels. Atherosclerosis, 2007, 191, 259-264.	0.8	99
90	HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells. Journal of Cell Biology, 2006, 174, 1059-1069.	5.2	231

#	Article	IF	CITATIONS
91	Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. Journal of Clinical Investigation, 2004, 113, 1258-1265.	8.2	573
92	Mouse Models of Arteriosclerosis. American Journal of Pathology, 2004, 165, 1-10.	3.8	101
93	Endothelial Replacement and Angiogenesis in Arteriosclerotic Lesions of Allografts Are Contributed by Circulating Progenitor Cells. Circulation, 2003, 108, 3122-3127.	1.6	205
94	Circulating Progenitor Cells Regenerate Endothelium of Vein Graft Atherosclerosis, Which Is Diminished in ApoE-Deficient Mice. Circulation Research, 2003, 93, e76-86.	4.5	171
95	Infections, heat shock proteins, and atherosclerosis. Current Opinion in Cardiology, 2003, 18, 245-252.	1.8	36
96	Smooth Muscle Cells in Transplant Atherosclerotic Lesions Are Originated From Recipients, but Not Bone Marrow Progenitor Cells. Circulation, 2002, 106, 1834-1839.	1.6	188
97	Both Donor and Recipient Origins of Smooth Muscle Cells in Vein Graft Atherosclerotic Lesions. Circulation Research, 2002, 91, e13-20.	4.5	138
98	Role of Heat Shock Proteins in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 1547-1559.	2.4	297
99	Adenovirus-based overexpression of tissue inhibitor of metalloproteinases 1 reduces tissue damage in the joints of tumor necrosis factor ? transgenic mice. Arthritis and Rheumatism, 2001, 44, 2888-2898.	6.7	43
100	Mouse Model of Transplant Arteriosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2000, 20, 343-352.	2.4	74
101	Mechanical Stress–Induced Heat Shock Protein 70 Expression in Vascular Smooth Muscle Cells Is Regulated by Rac and Ras Small G Proteins but Not Mitogen-Activated Protein Kinases. Circulation Research, 2000, 86, 1122-1128.	4.5	79
102	Association of Serum Antibodies to Heat-Shock Protein 65 With Carotid Atherosclerosis. Circulation, 1999, 100, 1169-1174.	1.6	236
103	Endothelial Cytotoxicity Mediated by Serum Antibodies to Heat Shock Proteins of <i>Escherichia coli</i> and <i>Chlamydia pneumoniae</i> . Circulation, 1999, 99, 1560-1566.	1.6	293
104	Inhibition of Neointima Hyperplasia of Mouse Vein Grafts by Locally Applied Suramin. Circulation, 1999, 100, 861-868.	1.6	119