maria anna Maggi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8365741/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of hydrophilic carbon nanotube sponge via post-growth thermal treatment. Nanotechnology, 2022, 33, 245707.	1.3	3
2	Detection of Plant-Derived Adulterants in Saffron (Crocus sativus L.) by HS-SPME/GC-MS Profiling of Volatiles and Chemometrics. Food Analytical Methods, 2021, 14, 784-796.	1.3	14
3	Experimental Design and Response Surface Methodology Applied to Graphene Oxide Reduction for Adsorption of Triazine Herbicides. ACS Omega, 2021, 6, 16943-16954.	1.6	19
4	Authentication of PDO saffron of L'Aquila (Crocus sativus L.) by HPLC-DAD coupled with a discriminant multi-way approach. Food Control, 2020, 110, 107022.	2.8	11
5	Saffron: Chemical Composition and Neuroprotective Activity. Molecules, 2020, 25, 5618.	1.7	34
6	Multivariate optimization of an analytical method for the analysis of Abruzzo white wines by ICP OES. Analytical Methods, 2020, 12, 2772-2778.	1.3	7
7	Retention Modelling of Phenoxy Acid Herbicides in Reversed-Phase HPLC under Gradient Elution. Molecules, 2020, 25, 1262.	1.7	3
8	Saffron Shifts the Degenerative and Inflammatory Phenotype in Photoreceptor Degeneration. , 2020, , 163-176.		0
9	Curcuminoids-loaded liposomes: influence of lipid composition on their physicochemical properties and efficacy as delivery systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597, 124759.	2.3	19
10	Geographical discrimination of saffron (Crocus sativus L.) using ICP-MS elemental data and class modeling of PDO Zafferano dell'Aquila produced in Abruzzo (Italy). Food Analytical Methods, 2019, 12, 2572-2581.	1.3	23
11	Geographical classification of Iranian and Italian saffron sources based on HPLC analysis and UV–Vis spectra of aqueous extracts. European Food Research and Technology, 2019, 245, 2435-2446.	1.6	14
12	Geographical discrimination of red garlic (Allium sativum L.) produced in Italy by means of multivariate statistical analysis of ICP-OES data. Food Chemistry, 2019, 275, 333-338.	4.2	47
13	Adsorption of triazine herbicides from aqueous solution by functionalized multiwall carbon nanotubes grown on silicon substrate. Nanotechnology, 2018, 29, 065701.	1.3	21
14	Extraction of curcuminoids by using ethyl lactate and its optimisation by response surface methodology. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 89-95.	1.4	21
15	UHPLC Analysis of Saffron (Crocus sativus L.): Optimization of Separation Using Chemometrics and Detection of Minor Crocetin Esters. Molecules, 2018, 23, 1851.	1.7	22
16	Optimization using chemometrics of HS-SPME/GC–MS profiling of saffron aroma and identification of geographical volatile markers. European Food Research and Technology, 2018, 244, 1605-1613.	1.6	27
17	Experimental Design in Ion Chromatography: Effect of the Organic Modifier and Complexing Agent on the Retention of Alkaline and Alkaline Earth Ions. Chromatographia, 2017, 80, 853-860.	0.7	3
18	Geographical identification of saffron (Crocus sativus L.) by linear discriminant analysis applied to the UV–visible spectra of aqueous extracts. Food Chemistry, 2017, 219, 408-413.	4.2	59

MARIA ANNA MAGGI

#	Article	IF	CITATIONS
19	Investigation by response surface methodology of the combined effect of pH and composition of water-methanol mixtures on the stability of curcuminoids. Food Chemistry, 2017, 219, 414-418.	4.2	23
20	Geographical classification of Italian saffron (Crocus sativus L.) based on chemical constituents determined by high-performance liquid-chromatography and by using linear discriminant analysis. Food Chemistry, 2016, 212, 110-116.	4.2	69
21	Optimisation by response surface methodology of microextraction by packed sorbent of non steroidal anti-inflammatory drugs and ultra-high performance liquid chromatography analysis of dialyzed samples. Journal of Pharmaceutical and Biomedical Analysis, 2016, 125, 114-121.	1.4	29
22	Investigation by Response Surface Methodology of Extraction of Caffeine, Gallic Acid and Selected Catechins from Tea Using Water-Ethanol Mixtures. Food Analytical Methods, 2016, 9, 2773-2779.	1.3	7
23	Quantitative structure–retention relationships of cannabimimetic aminoalkilindole derivatives and their metabolites. Journal of Pharmaceutical and Biomedical Analysis, 2015, 109, 136-141.	1.4	4
24	Artificial neural network prediction of multilinear gradient retention in reversed-phase HPLC: comprehensive QSRR-based models combining categorical or structural solute descriptors and gradient profile parameters. Analytical and Bioanalytical Chemistry, 2015, 407, 1181-1190.	1.9	26
25	Optimisation of temperature-programmed gas chromatographic separation of organochloride pesticides by response surface methodology. Journal of Chromatography A, 2015, 1423, 149-157.	1.8	8
26	Prediction of the retention of <i>s</i> -triazines in reversed-phase high-performance liquid chromatography under linear gradient-elution conditions. Journal of Separation Science, 2014, 37, 1930-1936.	1.3	25
27	Modelling of UPLC behaviour of acylcarnitines by quantitative structure–retention relationships. Journal of Pharmaceutical and Biomedical Analysis, 2014, 96, 224-230.	1.4	14
28	Cross-column prediction of gas-chromatographic retention indices of saturated esters. Journal of Chromatography A, 2014, 1355, 269-277.	1.8	10
29	Quantitative structure/eluent–retention relationships in reversed-phase high-performance liquid chromatography based on the solvatochromic method. Analytical and Bioanalytical Chemistry, 2013, 405, 755-766.	1.9	1
30	Cross-column prediction of gas-chromatographic retention of polybrominated diphenyl ethers. Journal of Chromatography A, 2013, 1298, 118-131.	1.8	23
31	Cross-column retention prediction in reversed-phase high-performance liquid chromatography by artificial neural network modelling. Analytica Chimica Acta, 2012, 717, 52-60.	2.6	26
32	Multi-variable retention modelling in reversed-phase high-performance liquid chromatography based on the solvation method: A comparison between curvilinear and artificial neural network regression. Analytica Chimica Acta, 2011, 690, 35-46.	2.6	13
33	Multipleâ€column RPâ€HPLC retention modelling based on solvatochromic or theoretical solute descriptors. Journal of Separation Science, 2010, 33, 155-166.	1.3	21
34	Artificial neural network modelling of retention of pesticides in various octadecylsiloxane-bonded reversed-phase columns and water–acetonitrile mobile phase. Analytica Chimica Acta, 2009, 646, 47-61.	2.6	11
35	Quantitative structure–retention relationships of pesticides in reversed-phase high-performance liquid chromatography based on WHIM and GETAWAY molecular descriptors. Analytica Chimica Acta, 2008, 628, 162-172.	2.6	23
36	Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography. Analytica Chimica Acta, 2007, 582, 235-242.	2.6	46

#	Article	IF	CITATIONS
37	Investigation of retention behaviour of non-steroidal anti-inflammatory drugs in high-performance liquid chromatography by using quantitative structure–retention relationships. Analytica Chimica Acta, 2007, 601, 68-76.	2.6	42