Hongtao Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/83657/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal-Catalyzed One-Pot On-DNA Syntheses of Diarylmethane and Thioether Derivatives. ACS Catalysis, 2022, 12, 1639-1649.	11.2	20
2	Rhodium(III) Catalyzed C(sp ³)—H Functionalization. Chinese Journal of Organic Chemistry, 2022, 42, 391.	1.3	6
3	Incorporating Selenium into Heterocycles and Natural Products─From Chemical Properties to Pharmacological Activities. Journal of Medicinal Chemistry, 2022, 65, 4436-4456.	6.4	100
4	Selenium as an emerging versatile player in heterocycles and natural products modification. Drug Discovery Today, 2022, 27, 2268-2277.	6.4	36
5	Selenylation Chemistry Suitable for Onâ€Plate Parallel and Onâ€DNA Library Synthesis Enabling Highâ€Throughput Medicinal Chemistry. Angewandte Chemie, 2022, 134, .	2.0	2
6	Selenylation Chemistry Suitable for Onâ€Plate Parallel and Onâ€DNA Library Synthesis Enabling Highâ€Throughput Medicinal Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
7	A Small Molecule Selected from a DNAâ€Encoded Library of Natural Products That Binds to TNFâ€ <i>α</i> and Attenuates Inflammation In Vivo. Advanced Science, 2022, 9, .	11.2	19
8	CARâ€T Therapy in Clinical Practice: Technical Advances and Current Challenges. Advanced Biology, 2022, 6, .	2.5	2
9	Inside Cover: Selenylation Chemistry Suitable for Onâ€Plate Parallel and Onâ€DNA Library Synthesis Enabling Highâ€Throughput Medicinal Chemistry (Angew. Chem. Int. Ed. 35/2022). Angewandte Chemie - International Edition, 2022, 61, .	13.8	0
10	Innentitelbild: Selenylation Chemistry Suitable for Onâ€Plate Parallel and Onâ€DNA Library Synthesis Enabling Highâ€Throughput Medicinal Chemistry (Angew. Chem. 35/2022). Angewandte Chemie, 2022, 134, .	2.0	0
11	<i>gem</i> â€Difluoromethylene Alkyneâ€Enabled Diverse Câ^'H Functionalization and Application to the onâ€DNA Synthesis of Difluorinated Isocoumarins. Angewandte Chemie - International Edition, 2021, 60, 1959-1966.	13.8	55
12	<i>gem</i> â€Difluoromethylene Alkyneâ€Enabled Diverse Câ^'H Functionalization and Application to the onâ€DNA Synthesis of Difluorinated Isocoumarins. Angewandte Chemie, 2021, 133, 1987-1994.	2.0	8
13	基于é«~冿¶µæ^åƒæŠ€æœ⁻的细胞å†PAR检测æ−¹æ³•. Bio-protocol, 2021, , .	0.4	0
14	Sulfur [¹⁸ F]Fluoride Exchange Click Chemistry Enabled Ultrafast Late-Stage Radiosynthesis. Journal of the American Chemical Society, 2021, 143, 3753-3763.	13.7	89
15	BAY 60-6583 Enhances the Antitumor Function of Chimeric Antigen Receptor-Modified T Cells Independent of the Adenosine A2b Receptor. Frontiers in Pharmacology, 2021, 12, 619800.	3.5	8
16	DNAâ€Encoded Libraries: Hydrazide as a Pluripotent Precursor for Onâ€DNA Synthesis of Various Azole Derivatives. Chemistry - A European Journal, 2021, 27, 8214-8220.	3.3	8
17	Palladium-catalyzed one-pot phosphorylation of phenols mediated by sulfuryl fluoride. Chemical Communications, 2021, 57, 4588-4591.	4.1	21
18	Kaempferia galanga L.: Progresses in Phytochemistry, Pharmacology, Toxicology and Ethnomedicinal Uses. Frontiers in Pharmacology, 2021, 12, 675350.	3.5	13

#	Article	IF	CITATIONS
19	<i>Gem</i> -Difluorocyclopropenes as Versatile β-Monofluorinated Three-sp ² Carbon Sources for Cp*Rh(III)-Catalyzed [4 + 3] Annulation: Experimental Development and Mechanistic Insight. ACS Catalysis, 2021, 11, 14694-14701.	11.2	27
20	Click Chemistry in Natural Product Modification. Frontiers in Chemistry, 2021, 9, 774977.	3.6	16
21	Meeting organometallic chemistry with drug discovery: C H activation enabled discovery of a new ring system of 12H-Indazolo[2,1-a]cinnolin-12-ones with anti-proliferation activity. Bioorganic and Medicinal Chemistry Letters, 2020, 30, 126916.	2.2	11

Innenrücktitelbild: A Chemistry for Incorporation of Selenium into DNAâ \in Encoded Libraries (Angew.) Tj ETQq0 0 0 rgBT /Overlock 10 - 2.0 OVER 10 - 2.0 OV

23	MeCas12a, a Highly Sensitive and Specific System for COVIDâ€19 Detection. Advanced Science, 2020, 7, 2001300.	11.2	91
24	A DNA-encoded library for the identification of natural product binders that modulate poly (ADP-ribose) polymerase 1, a validated anti-cancer target. Biochemical and Biophysical Research Communications, 2020, 533, 241-248.	2.1	11
25	A Chemistry for Incorporation of Selenium into DNAâ€Encoded Libraries. Angewandte Chemie, 2020, 132, 13375-13382.	2.0	13
26	Iridium-catalyzed C–H amidation of <i>s</i> -tetrazines. Chemical Communications, 2020, 56, 4692-4695.	4.1	27
27	Selection of Small Molecules that Bind to and Activate the Insulin Receptor from a DNA-Encoded Library of Natural Products. IScience, 2020, 23, 101197.	4.1	34
28	Celastrol: Progresses in structure-modifications, structure-activity relationships, pharmacology and toxicology. European Journal of Medicinal Chemistry, 2020, 189, 112081.	5.5	98
29	A Chemistry for Incorporation of Selenium into DNAâ€Encoded Libraries. Angewandte Chemie - International Edition, 2020, 59, 13273-13280.	13.8	50
30	Tripterygium glycoside fraction n2 ameliorates adriamycin-induced nephrotic syndrome in rats by suppressing apoptosis. Journal of Ethnopharmacology, 2020, 257, 112789.	4.1	16
31	2-Bromopalmitate targets retinoic acid receptor alpha and overcomes all-trans retinoic acid resistance of acute promyelocytic leukemia. Haematologica, 2019, 104, 102-112.	3.5	10
32	Triptriolide antagonizes triptolide-induced nephrocyte apoptosis via inhibiting oxidative stress in vitro and in vivo. Biomedicine and Pharmacotherapy, 2019, 118, 109232.	5.6	19
33	DNAâ€Encoded Libraries: Aryl Fluorosulfonates as Versatile Electrophiles Enabling Facile Onâ€DNA Suzuki, Sonogashira, and Buchwald Reactions. Advanced Science, 2019, 6, 1901551.	11.2	84
34	Synthesis of <i>N</i> -Acyl Sulfamates from Fluorosulfonates and Potassium Trimethylsilyloxyl Imidates. Journal of Organic Chemistry, 2019, 84, 15380-15388.	3.2	10
35	A review of the total syntheses of triptolide. Beilstein Journal of Organic Chemistry, 2019, 15, 1984-1995.	2.2	15
36	Synthesis of Indazolo[2,1-a]Cinnolines via Rhodium (III)-Catalyzed C–H activation/annulation under mild conditions. Tetrahedron, 2019, 75, 4005-4009.	1.9	10

Ηονςτάο Χυ

#	Article	IF	CITATIONS
37	Triptolide: Medicinal chemistry, chemical biology and clinical progress. European Journal of Medicinal Chemistry, 2019, 176, 378-392.	5.5	98
38	Functionalityâ€Independent DNA Encoding of Complex Natural Products. Angewandte Chemie - International Edition, 2019, 58, 9254-9261.	13.8	54
39	Functionalityâ€Independent DNA Encoding of Complex Natural Products. Angewandte Chemie, 2019, 131, 9355-9362.	2.0	18
40	Triptolide-targeted delivery methods. European Journal of Medicinal Chemistry, 2019, 164, 342-351.	5.5	37
41	Dual-function of triptriolide in podocytes injury: inhibiting of apoptosis and restoring of survival. Biomedicine and Pharmacotherapy, 2019, 109, 1932-1939.	5.6	13
42	Click chemistryâ€based synthesis and cytotoxic activity evaluation of 4αâ€ŧriazole acetate podophyllotoxin derivatives. Chemical Biology and Drug Design, 2019, 93, 473-483.	3.2	14
43	Synthesis of Oridonin Derivatives via Mizoroki-Heck Reaction and Click Chemistry for Cytotoxic Activity. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 935-947.	1.7	3
44	Ruthenium(<scp>ii</scp>)-catalyzed synthesis of indazolone-fused cinnolines <i>via</i> C–H coupling with diazo compounds. Organic and Biomolecular Chemistry, 2018, 16, 7236-7244.	2.8	35
45	Triptriolide Alleviates Lipopolysaccharide-Induced Liver Injury by Nrf2 and NF-ήB Signaling Pathways. Frontiers in Pharmacology, 2018, 9, 999.	3.5	37
46	Asymmetric catalyzed intramolecular aza-Michael reaction mediated by quinine-derived primary amines. Chinese Chemical Letters, 2017, 28, 1793-1797.	9.0	14
47	Tris(2-carboxyethyl)phosphine promotes hydrolysis of iminoboronates. Tetrahedron Letters, 2017, 58, 3101-3106.	1.4	2
48	Identification of a diverse synthetic abietane diterpenoid library for anticancer activity. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 505-510.	2.2	30
49	Divinylsulfonamides as Specific Linkers for Stapling Disulfide Bonds in Peptides. Organic Letters, 2017, 19, 4972-4975.	4.6	32
50	LLDT-288, a novel triptolide analogue exhibits potent antitumor activity in vitro and in vivo. Biomedicine and Pharmacotherapy, 2017, 93, 1004-1009.	5.6	15
51	Click chemistry-based synthesis and anticancer activity evaluation of novel C-14 1,2,3-triazole dehydroabietic acid hybrids. European Journal of Medicinal Chemistry, 2017, 138, 1042-1052.	5.5	40
52	Identification of a diverse synthetic abietane diterpenoid library and insight into the structure-activity relationships for antibacterial activity. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 5382-5386.	2.2	31
53	Semisynthesis of triptolide analogues: Effect of B-ring substituents on cytotoxic activities. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5671-5674.	2.2	13
54	Design, Synthesis and Structure–Activity Relationships Studies on the Dâ€Ring of the Natural Product Triptolide. ChemMedChem, 2014, 9, 290-295.	3.2	29

Ηονςτάο Χυ

#	Article	IF	CITATIONS
55	Metal-mediate reactions based formal synthesis of triptonide and triptolide. Tetrahedron Letters, 2014, 55, 7118-7120.	1.4	15
56	Synthesis and biological evaluation of 20-hydroxytriptonide and its analogues. Tetrahedron, 2014, 70, 3107-3115.	1.9	20
57	Design, synthesis and anticancer activity evaluation of novel C14 heterocycle substituted epi-triptolide. European Journal of Medicinal Chemistry, 2014, 73, 46-55.	5.5	41
58	Divergent Total Synthesis of Triptolide, Triptonide, Tripdiolide, 16-Hydroxytriptolide, and Their Analogues. Journal of Organic Chemistry, 2014, 79, 10110-10122.	3.2	29