Weijia Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8365556/publications.pdf

Version: 2024-02-01

		1170033	1336881
12	437	9	12
papers	citations	h-index	g-index
12	12	12	357
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hypoglycemic bioactivity of anthocyanins: A review on proposed targets and potential signaling pathways. Critical Reviews in Food Science and Nutrition, 2023, 63, 7878-7895.	5.4	10
2	Effects of chitooligosaccharide-functionalized graphene oxide on stability, simulated digestion, and antioxidant activity of blueberry anthocyanins. Food Chemistry, 2022, 368, 130684.	4.2	8
3	Novel pH sensitivity and colorimetry-enhanced anthocyanin indicator films by chondroitin sulfate co-pigmentation for shrimp freshness monitoring. Food Control, 2022, 131, 108441.	2.8	83
4	A sub-freshness monitoring chitosan/starch-based colorimetric film for improving color recognition accuracy via controlling the pH value of the film-forming solution. Food Chemistry, 2022, 388, 132975.	4.2	36
5	Conversion of condensed tannin from chokeberry to cyanidin: Evaluation of antioxidant activity and gut microbiota regulation. Food Research International, 2022, 158, 111456.	2.9	4
6	Effects of \hat{l}_{\pm} -casein and \hat{l}^2 -casein on the stability, antioxidant activity and bioaccessibility of blueberry anthocyanins with an in vitro simulated digestion. Food Chemistry, 2021, 334, 127526.	4.2	74
7	Effects of high hydrostatic pressure and thermal processing on anthocyanin content, polyphenol oxidase and l²-glucosidase activities, color, and antioxidant activities of blueberry (Vaccinium Spp.) puree. Food Chemistry, 2021, 342, 128564.	4.2	54
8	Effect of Blueberry Anthocyanin-Rich Extracts on Peripheral and Hippocampal Antioxidant Defensiveness: The Analysis of the Serum Fatty Acid Species and Gut Microbiota Profile. Journal of Agricultural and Food Chemistry, 2021, 69, 3658-3666.	2.4	42
9	Serum Ceramide Reduction by Blueberry Anthocyanin-Rich Extract Alleviates Insulin Resistance in Hyperlipidemia Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 8185-8194.	2.4	28
10	The effect of pH on the chemical and structural interactions between apple polyphenol and starch derived from rice and maize. Food Science and Nutrition, 2020, 8, 5026-5035.	1.5	13
11	Phytochemical profiles of rice and their cellular antioxidant activity against ABAP induced oxidative stress in human hepatocellular carcinoma HepG2 cells. Food Chemistry, 2020, 318, 126484.	4.2	33
12	Blueberry Malvidin-3-galactoside Suppresses Hepatocellular Carcinoma by Regulating Apoptosis, Proliferation, and Metastasis Pathways <i>In Vivo</i> and <i>In Vitro</i> Journal of Agricultural and Food Chemistry, 2019, 67, 625-636.	2.4	52