Paul Wynblatt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8365202/publications.pdf Version: 2024-02-01

DALII MANBLATT

#	Article	IF	CITATIONS
1	The dependence of ostwald ripening kinetics on particle volume fraction. Acta Metallurgica, 1979, 27, 489-497.	2.1	485
2	Surface energy and solute strain energy effects in surface segregation. Surface Science, 1977, 65, 511-531.	0.8	398
3	Supported metal crystallites. Progress in Solid State Chemistry, 1975, 9, 21-58.	3.9	330
4	A review of wetting versus adsorption, complexions, and related phenomena: the rosetta stone of wetting. Journal of Materials Science, 2013, 48, 5681-5717.	1.7	238
5	Particle growth in model supported metal catalysts—I. Theory. Acta Metallurgica, 1976, 24, 1165-1174.	2.1	228
6	The distribution of internal interfaces in polycrystals. International Journal of Materials Research, 2004, 95, 197-214.	0.8	198
7	Calcium Segregation to a Magnesium Oxide (100) Surface. Journal of the American Ceramic Society, 1983, 66, 111-117.	1.9	165
8	The chemisorption of CO and NO on Rh(110). Surface Science, 1980, 97, 346-362.	0.8	144
9	Anisotropy of segregation at grain boundaries and surfaces. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 2595-2620.	1.1	144
10	A calculation of relaxation, migration and formation energies for surface defects in copper. Surface Science, 1968, 12, 109-127.	0.8	116
11	Particle growth in model supported metal catalysts—II. Comparison of experiment with theory. Acta Metallurgica, 1976, 24, 1175-1182.	2.1	97
12	A Monte Carlo study of surface segregation in alloys. Surface Science, 1975, 52, 569-587.	0.8	89
13	Equilibrium segregation and interfacial energy in multicomponent systems. Acta Metallurgica Et Materialia, 1991, 39, 771-778.	1.9	84
14	The effect of stress on grain boundary grooving. Acta Metallurgica Et Materialia, 1993, 41, 3541-3547.	1.9	83
15	Experimental evidence for a wetting transition in liquid Gaî—,Pb alloys. Surface Science, 1996, 345, 85-90.	0.8	79
16	Equilibrium Shape of Copper Crystals Grown on Sapphire. Journal of Materials Science, 2004, 12, 7-18.	1.2	79
17	Development of glue-type potentials for the Al–Pb system: phase diagram calculation. Acta Materialia, 2000, 48, 1753-1761	3.8	77
18	Thermal nitridation of Si(111) by nitric oxide. Journal of Vacuum Science and Technology, 1981, 18, 965-970.	1.9	74

#	Article	IF	CITATIONS
19	A calculation of migration energies and binding energies for tungsten adatoms on tungsten surfaces. Surface Science, 1970, 22, 125-136.	0.8	68
20	Habits of Grains in Dense Polycrystalline Solids. Journal of the American Ceramic Society, 2004, 87, 724-726.	1.9	68
21	Calculation of the vacancy migration energy in cubic crystals. Journal of Physics and Chemistry of Solids, 1968, 29, 215-224.	1.9	61
22	Capillary instabilities in thin films: A model of thermal pitting at grain boundary vertices. Acta Metallurgica Et Materialia, 1992, 40, 3239-3248.	1.9	61
23	Grain boundary segregation in oxide ceramics. Journal of the European Ceramic Society, 2003, 23, 2841-2848.	2.8	61
24	Diffusion mechanisms in ordered body-centered cubic alloys. Acta Metallurgica, 1967, 15, 1453-1460.	2.1	57
25	Solid-state wetting transitions at grain boundaries. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 495, 119-125.	2.6	55
26	Computer simulation of phase transitions associated with surface miscibility gaps. Surface Science, 1990, 240, 245-252.	0.8	54
27	The role of electrochemical migration and moisture adsorption on the reliability of metallized ceramic substrates. Journal of Electronic Materials, 1989, 18, 339-353.	1.0	53
28	The effects of prewetting and wetting transitions on the surface energy of liquid binary alloys. Acta Materialia, 1998, 46, 2337-2347.	3.8	53
29	High-resolution electron microscopy and image simulation of TT-,T-, and H-niobia and model silica-supported niobium surface oxides. Chemistry of Materials, 1989, 1, 187-193.	3.2	51
30	The equilibrium form of pure gold crystals. Surface Science, 1998, 398, 259-266.	0.8	50
31	Step energetics of Pb(111) vicinal surfaces from facet shape. Surface Science, 1999, 424, 271-277.	0.8	49
32	Water Adsorption and Surface Conductivity Measurements on <tex>alpha</tex> -Alumina Substrates. IEEE Transactions on Components, Hybrids and Manufacturing Technology, 1987, 10, 247-251.	0.4	48
33	On the existence of surface miscibility gaps in Cuî—,Ag alloys. Surface Science, 1991, 241, L21-L24.	0.8	48
34	Orientation relationships of copper crystals on c-plane sapphire. Acta Materialia, 2011, 59, 5320-5331.	3.8	47
35	Study of a surface critical phenomenon associated with surface segregation in Cuî—,Ag alloys. Surface Science, 1993, 290, 335-344.	0.8	46
36	A determination of interfacial energy and interfacial composition in Cuî—,Pb and Cuî—,Pbî—,X alloys by solid state wetting measurements. Acta Metallurgica Et Materialia, 1993, 41, 3331-3340.	1.9	44

#	Article	IF	CITATIONS
37	Surface segregation in a Ni-1 at% Pd alloy. Surface Science, 1979, 82, 79-92.	0.8	43
38	A model study of catalyst particle coarsening. Scripta Metallurgica, 1973, 7, 969-975.	1.2	41
39	SO2 adsorption on Rh(110) and Pt(110) surfaces. Applications of Surface Science, 1981, 8, 250-259.	1.0	41
40	Monte Carlo simulation of the Cuî—,Ag (001) semicoherent interphase boundary. Acta Metallurgica Et Materialia, 1990, 38, 177-184.	1.9	41
41	Study of a wetting-related adsorption transition in the Ga–Pb system:. Surface Science, 1998, 415, 336-345.	0.8	41
42	A Monte Carlo study of the structur and composition of (001) semicoherent interphase boundaries in Cuî—,Agî—,Au alloys. Acta Metallurgica Et Materialia, 1991, 39, 2681-2691.	1.9	40
43	Computer simulation of surface segregation in ternary alloys. Computational Materials Science, 1999, 15, 250-263.	1.4	39
44	Correlation of Grain Boundary Character with Wetting Behavior. Journal of Materials Science, 2001, 9, 265-273.	1.2	38
45	Scanning tunneling microscopy of equilibrium crystal shapes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 1059-1065.	0.9	34
46	Pseudopartial Wetting and Precursor Film Growth in Immiscible Metal Systems. Langmuir, 2004, 20, 402-408.	1.6	34
47	Anisotropy of surface composition in a Ni-Au alloy. Surface Science, 1985, 155, 79-100.	0.8	33
48	Relation between grain boundary segregation and grain boundary character in FCC alloys. Journal of Materials Science, 2005, 40, 2765-2773.	1.7	33
49	Twoâ€dimensional phase transitions associated with surface miscibility gaps. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1992, 10, 2709-2717.	0.9	32
50	Continuous and discontinuous transitions on 3D equilibrium crystal shapes: a new look at Pb and Au. Surface Science, 2001, 481, 13-24.	0.8	32
51	Effects of Nb Doping and Segregation on the Grain Boundary Plane Distribution in TiO2. Journal of the American Ceramic Society, 2006, 89, 666-671.	1.9	32
52	Effects of concentration dependent diffusivity on the growth of precursing films of Pb on Cu(111). Surface Science, 2001, 488, 73-82.	0.8	31
53	Development of Finnis–Sinclair type potentials for Pb, Pb–Bi, and Pb–Ni systems: application to surface segregation. Acta Materialia, 1998, 46, 3027-3032.	3.8	30
54	On the formation and migration entropies of vacancies in metals. Journal of Physics and Chemistry of Solids, 1969, 30, 2201-2211.	1.9	29

#	Article	IF	CITATIONS
55	A Calculation of the Formation and Migration Entropies of Surface Defects in Copper. Physica Status Solidi (B): Basic Research, 1969, 36, 797-808.	0.7	29
56	Equilibrium surface composition of ternary alloys. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1989, 20, 215-223.	1.4	29
57	Computer simulation of Pb/Al interfaces. Acta Materialia, 2000, 48, 2557-2563.	3.8	28
58	The effects of interfacial segregation on wetting in solid metal-on-metal and metal-on-ceramic systems. Acta Materialia, 2000, 48, 4439-4447.	3.8	28
59	Equilibrium crystal shape of Bi-saturated Cu crystals at 1223K. Acta Materialia, 2005, 53, 4057-4064.	3.8	28
60	Correlation Between Grainâ€Boundary Segregation and Grainâ€Boundary Plane Orientation in Nbâ€Doped TiO ₂ . Journal of the American Ceramic Society, 2005, 88, 2286-2291.	1.9	28
61	Simulation of spreading of precursing Ag films on Ni(). Computational Materials Science, 2002, 25, 503-509.	1.4	27
62	Equilibrium interphase interfaces and premelting of the Pb(110) surface. Physical Review B, 1995, 51, 10972-10980.	1.1	26
63	Melting behavior of nanosized lead particles embedded in an aluminum matrix. Acta Materialia, 2004, 52, 2305-2316.	3.8	25
64	Modeling grain boundary and surface segregation in multicomponent high-entropy alloys. Physical Review Materials, 2019, 3, .	0.9	24
65	Nucleation of two-dimensional phases on the (111) surface of Cu-Ag alloys. Surface Science, 1994, 310, 27-33.	0.8	23
66	Equilibrium form of Pb Bi Ni alloy crystals. Journal of Crystal Growth, 1997, 173, 513-527.	0.7	23
67	Surface segregation in a dilute copper–silver alloy. Journal of Materials Research, 1986, 1, 646-651.	1.2	22
68	Electrochemical Examination of Dendritic Growth on Electronic Devices in HCl Electrolytes. Corrosion, 1990, 46, 665-671.	0.5	22
69	Modification of the gold/graphite interfacial energy by interfacial adsorption of nickel. Journal of Materials Science, 1995, 30, 94-100.	1.7	22
70	Scanning tunneling microscopy of equilibrium crystal shape of Pb particles: test of universality. Surface Science, 1998, 417, L160-L165.	0.8	22
71	Effect of Segregating Impurities on the Grainâ€Boundary Character Distribution of Magnesium Oxide. Journal of the American Ceramic Society, 2009, 92, 3044-3051.	1.9	22
72	Vacancy relaxation in cubic crystals. Journal of Physics and Chemistry of Solids, 1967, 28, 2108-2110.	1.9	21

#	Article	IF	CITATIONS
73	Flatness and shape of (111) facets of equilibrated Pb crystals. Physical Review B, 1997, 56, 12131-12134.	1.1	21
74	Study of a wetting-related adsorption transition in the Ga–Pb system: 2. Surface composition measurements of Ga-rich liquids. Surface Science, 1998, 415, 346-350.	0.8	21
75	Wetting and energetics of solid Au andAu–Ge/SiC interfaces. Acta Materialia, 1998, 46, 4853-4859.	3.8	20
76	Correlation of Grain Boundary Character with Wetting Behavior. Journal of Materials Science, 2000, 8, 351-361.	1.2	20
77	Summary Abstract: The segregation of gold at copper/silver interphase boundaries. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 1746-1747.	0.9	19
78	Surface composition of dilute Cu–Ag alloys: A comparison between experiment and Monte Carlo modeling. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1991, 9, 27-31.	0.9	19
79	Wetting and prewetting transitions in Gaâ€Pb alloys. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1998, 102, 1142-1150.	0.9	19
80	Step-step interactions and universal exponents studied via three-dimensional equilibrium crystal shapes. New Journal of Physics, 2002, 4, 60-60.	1.2	19
81	The effects of prewetting and wetting transitions on the surface energy of liquid binary alloys. Acta Materialia, 1998, 46, 2337-2347.	3.8	19
82	Coarsening kinetics of platinum particles on oxide substrates. Acta Metallurgica, 1981, 29, 921-929.	2.1	18
83	Modeling the growth of dendrite-like gold islands on graphite substrates. Journal of Crystal Growth, 1990, 102, 618-628.	0.7	18
84	Interfacial Segregation Effects in Wetting Phenomena. Annual Review of Materials Research, 2008, 38, 173-196.	4.3	18
85	Copper crystals on the (11 \$\$f{ar{2}}\$\$ 0) sapphire plane: orientation relationships, triple line ridges and interface shape equilibrium. Journal of Materials Science, 2013, 48, 3013-3026.	1.7	18
86	Surface composition of ternary cu-ag-au alloys: part i. experimental results. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1991, 22, 1833-1840.	1.4	17
87	Observation of a Sharp Transition in Contact Angle in the Wetting of Graphite by Solid Pb-Ni Alloys. Journal of Materials Science, 1999, 7, 173-180.	1.2	17
88	Wetting-related adsorption transitions in liquid Ga–Tl alloys. Surface Science, 2001, 476, L273-L277.	0.8	17
89	Electrochemical Migration of Copper in Adsorbed Moisture Layers. Corrosion, 1989, 45, 643-648.	0.5	14
90	Wetting in Multiphase Systems with Complex Geometries. Journal of Materials Science, 2001, 9, 191-197.	1.2	14

#	Article	IF	CITATIONS
91	Some aspects of the anisotropy of grain boundary segregation and wetting. Journal of Materials Science, 2006, 41, 7760-7768.	1.7	14
92	Computer Simulations of Epitaxial Interfaces. Materials Research Society Symposia Proceedings, 1988, 141, 399.	0.1	13
93	Observations of a two-dimensional compositional phase transition at the surface of a polycrystalline Pbî—,Biî—,Ni alloy. Surface Science, 1994, 302, 179-184.	0.8	13
94	Energy of the Pb{111}‗Al{111} interface. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 1003-1007.	1.1	13
95	The Structure and Composition of Interphase Boundaries in Ni/Ag-(001) Thin Films Doped with Au. Materials Research Society Symposia Proceedings, 1985, 56, 189.	0.1	12
96	Segregation to the (100) surface of dilute Cu–Ag alloys. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1994, 12, 255-257.	0.9	12
97	A model of compositional surface phase transitions in ternary alloys. Surface Science, 1996, 364, 409-416.	0.8	12
98	Impact of surface phase transitions and structure on surface diffusion profiles of Pb and Bi over Cu(100). Surface Science, 2006, 600, 1265-1276.	0.8	12
99	Surface segregation in multicomponent high entropy alloys: Atomistic simulations versus a multilayer analytical model. Computational Materials Science, 2021, 187, 110101.	1.4	12
100	Chemical Aspects of Equilibrium Segregation to Ceramic Interfaces. , 1981, , 83-95.		12
101	The effect of particle size on the surface composition of microcrystalline alloys. Surface Science, 1985, 160, 475-491.	0.8	11
102	Surface energy, adsorption, and wetting transitions in ternary liquid alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 2851-2858.	1.1	11
103	Importance of interfacial step alignment in hetero-epitaxy and orientation relationships: the case of Ag equilibrated on Ni substrates. Part 1 computer simulations. Journal of Materials Science, 2015, 50, 5262-5275.	1.7	11
104	Importance of interfacial step alignment in hetero-epitaxy and orientation relationships: the case of Ag equilibrated on Ni substrates. Part 2 experiments. Journal of Materials Science, 2015, 50, 5276-5285.	1.7	11
105	Summary Abstract: The elastic properties and the reconstruction of Au and Pt (011) surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 766-767.	0.9	10
106	Anisotropic phenomena at interfaces in bismuth–saturated copper. Scripta Materialia, 2004, 50, 565-569.	2.6	10
107	Epitaxy for Weakly Interacting Systems of Large Misfit. Materials Research Society Symposia Proceedings, 1987, 94, 111.	0.1	9
108	A study of the Pb/Al (100) interfacial energy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 2569-2572.	1.1	9

#	Article	IF	CITATIONS
109	Combination of a Besocke-type scanning tunneling microscope with a scanning electron microscope. Review of Scientific Instruments, 2001, 72, 3546-3551.	0.6	8
110	Anisotropy of Segregation at Grain Boundaries and Surfaces. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 438-439.	1.1	8
111	Effects of anisotropy on the equilibrium shape of nanoscale pores at grain boundaries. Acta Materialia, 2013, 61, 4572-4580.	3.8	8
112	Surface composition of ternary cu-ag-au alloys: part ii. a comparison of experiment with theoretical models. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1991, 22, 1841-1848.	1.4	7
113	Summary Abstract: Anisotropy of equilibrium surface composition of alloys. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 1224-1225.	0.9	6
114	Calibration of Auger spectra and equilibrium surface composition in a dilute copper–gold alloy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1988, 6, 2253-2259.	0.9	6
115	The effects of Tl additions on a wetting-related adsorption transition in liquid Ga–Pb alloys. Surface Science, 2000, 465, 97-102.	0.8	6
116	Origin of an unusual systematic variation in the heteroepitaxy of AgÂonÂNi – The roles of twinning and step alignment. Acta Materialia, 2019, 168, 121-132.	3.8	5
117	Heteroepitaxy of FCC-on-FCC systems of large misfit. Acta Materialia, 2022, 225, 117550.	3.8	5
118	The shapes of two-phase particles: The case of trapped voids in lead particles embedded in silicon. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2001, 81, 1873-1886.	0.7	4
119	An Auger microscopy study of the meeting and interdiffusion of pure Pb and Bi adsorbed layers on polycrystalline Cu. Surface Science, 2005, 575, 69-74.	0.8	4
120	Two-dimensional versus three-dimensional constraints in hetero-epitaxy/orientation relationships. Journal of Materials Science, 2017, 52, 9630-9639.	1.7	4
121	Two-Dimensional Phase Transitions Associated with a Surface Miscibility Gap in Cu-Ag Alloys. Materials Research Society Symposia Proceedings, 1990, 202, 421.	0.1	3
122	Influence of Segregation Effects on the Energies of Lead/Graphite and Gold/Graphite Interfaces. Materials Research Society Symposia Proceedings, 1993, 318, 393.	0.1	3
123	On the relation between the anisotropies of grain boundary segregation and grain boundary energy. International Journal of Materials Research, 2005, 96, 1142-1146.	0.8	3
124	Factors Affecting the Coverage Dependence of the Diffusivity of One Metal over the Surface of Another. International Journal of Thermophysics, 2007, 28, 646-660.	1.0	3
125	xmins:mm= http://www.w3.org/1998/Math/Math/MathML_aitimg= si4.gir overflow="scroll"> <mml:mrow> <mml:mo stretchy="false"> (<mml:mn> 1 </mml:mn> <mml:mspace)="" 0.784314="" 1="" etqq1="" rgbt<="" td="" tj="" width="5.0pt"><td>/Ovæløck 1</td><td>.0 T\$ 50 97 To</td></mml:mspace></mml:mo </mml:mrow>	/Ovæløck 1	.0 T\$ 50 97 To
	Summary Abstract: Study of niohia–silica interfacial nhenomena with model thin films, Journal of		

126 Summary Abstract: Study of niobia–silica interfacial phenomena with model thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 1694-1695.

0.9 2

#	ARTICLE	IF	CITATIONS
127	A Survey of Segregation at Interphase Boundaries in Ternary Ni-Ag-X Alloys. Materials Research Society Symposia Proceedings, 1990, 205, 369.	0.1	2
128	Interdiffusion of adsorbed Pb and Bi on Cu(100). Surface Science, 2007, 601, 1101-1107.	0.8	2
129	Monte Carlo Modeling of Interphase Boundaries in Cu-Ag and Cu-Ag-Au Alloys. Materials Research Society Symposia Proceedings, 1990, 205, 375.	0.1	1
130	On the existence of surface miscibility gaps in Cuî—,Ag alloys. Surface Science Letters, 1991, 241, L21-L24.	0.1	1
131	Molecular Dynamics Study of Disordering and Premelting of the Pb(110) Surface. Materials Research Society Symposia Proceedings, 1994, 355, 227.	0.1	1
132	Comparison between modeling and experimental measurements of interfacial properties. Applied Surface Science, 2003, 219, 39-46.	3.1	1
133	A model of oxygen adsorption at liquid copper surfaces. Surface Science, 2010, 604, 1369-1376.	0.8	1
134	Influence of step structure on preferred orientation relationships of Ag deposited on Ni(111). Acta Materialia, 2020, 200, 287-296.	3.8	1
135	A Comparison of the Surface Composition of Solid and Liquid Alloys. Materials Research Society Symposia Proceedings, 1986, 83, 67.	0.1	Ο
136	Reply to Comment on Pseudopartial Wetting and Precursor Film Growth in Immiscible Metal Systems. Langmuir, 2005, 21, 3724-3724.	1.6	0
137	Introduction to Interfaces and Diffusion. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 393-424.	0.2	Ο
138	Grain Boundary Orientations in a Fe-Mn-Cu Polycrystalline Alloy. Ceramic Transactions, 0, , 213-220.	0.1	0
139	On the relation between the anisotropies of grain boundary segregation and grain boundary energy. International Journal of Materials Research, 2022, 96, 1142-1146.	0.1	0