Melvyn A Goodale

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/836492/melvyn-a-goodale-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 293
 26,140
 76
 156

 papers
 citations
 h-index
 g-index

 338
 29,588
 4.6
 7.25

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
293	Coming to grips with a fundamental deficit in visual perception Cognitive Neuropsychology, 2022, 1-4	2.3	
292	The role of animal faces in the animate-inanimate distinction in the ventral temporal cortex <i>Neuropsychologia</i> , 2022 , 108192	3.2	2
291	The effect of smiling on the perceived age of male and female faces across the lifespan. <i>Scientific Reports</i> , 2021 , 11, 23020	4.9	1
290	A priming study on naming real versus pictures of tools. <i>Experimental Brain Research</i> , 2021 , 239, 821-83	142.3	
289	Lessons from human vision for robotic design. <i>Autonomous Intelligent Systems</i> , 2021 , 1, 1		O
288	The Age-Dependent Neural Substrates of Blindsight. <i>Trends in Neurosciences</i> , 2020 , 43, 242-252	13.3	8
287	The Role of Haptic Expectations in Reaching to Grasp: From Pantomime to Natural Grasps and Back Again. <i>Frontiers in Psychology</i> , 2020 , 11, 588428	3.4	4
286	Grip Constancy but Not Perceptual Size Constancy Survives Lesions of Early Visual Cortex. <i>Current Biology</i> , 2020 , 30, 3680-3686.e5	6.3	6
285	Transforming abstract plans into concrete actions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 29265-29267	11.5	
284	When perception intrudes on 2D grasping: evidence from Garner interference. <i>Psychological Research</i> , 2020 , 84, 2138-2143	2.5	1
283	A pantomiming priming study on the grasp and functional use actions of tools. <i>Experimental Brain Research</i> , 2019 , 237, 2155-2165	2.3	2
282	The material-weight illusion disappears or inverts in objects made of two materials. <i>Journal of Neurophysiology</i> , 2019 , 121, 996-1010	3.2	4
281	Saccade Latency Provides Evidence for Reduced Face Inversion Effects With Higher Autism Traits. <i>Frontiers in Human Neuroscience</i> , 2019 , 13, 470	3.3	4
280	Psychophysical and neuroimaging responses to moving stimuli in a patient with the Riddoch phenomenon due to bilateral visual cortex lesions. <i>Neuropsychologia</i> , 2019 , 128, 150-165	3.2	10
279	Changing the Real Viewing Distance Reveals the Temporal Evolution of Size Constancy in Visual Cortex. <i>Current Biology</i> , 2019 , 29, 2237-2243.e4	6.3	12
278	An fMRI study identifying brain regions activated when performing well-learned versus newly learned visuomotor associations. <i>Journal of Vision</i> , 2019 , 19, 278	0.4	
277	Investigating the perceived timing of sensory events triggering actions in patients with Parkinsonß disease and the effects of dopaminergic therapy. <i>Cortex</i> , 2019 , 115, 309-323	3.8	1

(2017-2019)

276	Still holding after all these years: An action-perception dissociation in patient DF. <i>Neuropsychologia</i> , 2019 , 128, 249-254	3.2	7
275	Affective blindsight in the absence of input from face processing regions in occipital-temporal cortex. <i>Neuropsychologia</i> , 2019 , 128, 50-57	3.2	9
274	More than blindsight: Case report of a child with extraordinary visual capacity following perinatal bilateral occipital lobe injury. <i>Neuropsychologia</i> , 2019 , 128, 178-186	3.2	20
273	Two visual pathways - Where have they taken us and where will they lead in future?. <i>Cortex</i> , 2018 , 98, 283-292	3.8	32
272	Transient visual pathway critical for normal development of primate grasping behavior. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 1364-1369	11.5	37
271	The role of non-conscious visual processing in obstacle avoidance: A commentary on Ross et⊡l. (2016). <i>Cortex</i> , 2018 , 98, 269-275	3.8	4
270	The effects of smiling on perceived age defy belief. Psychonomic Bulletin and Review, 2018, 25, 612-616	4.1	8
269	Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations. <i>Cortex</i> , 2018 , 98, 34-48	3.8	49
268	What Role Does "Elongation" Play in "Tool-Specific" Activation and Connectivity in the Dorsal and Ventral Visual Streams?. <i>Cerebral Cortex</i> , 2018 , 28, 1117-1131	5.1	28
267	The Sander parallelogram illusion dissociates action and perception despite control for the litany of past confounds. <i>Cortex</i> , 2018 , 98, 163-176	3.8	14
266	FittsPLaw is modulated by movement history. <i>Psychonomic Bulletin and Review</i> , 2018 , 25, 1833-1839	4.1	6
265	The dorsal "action" pathway. <i>Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn</i> , 2018 , 151, 449-466	3	19
264	Touchpoints reveal sensitivity to object shape in an individual with visual agnosia and in another who is cortically blind. <i>Journal of Vision</i> , 2018 , 18, 435	0.4	
263	A TMS Investigation on the Role of Lateral Occipital Complex and Caudal Intraparietal Sulcus in the Perception of Object Form and Orientation. <i>Journal of Cognitive Neuroscience</i> , 2017 , 29, 881-895	3.1	5
262	Duplex Vision 2017 , 648-661		1
261	Temporal distortion in the perception of actions and events. <i>Cognition</i> , 2017 , 158, 1-9	3.5	7
260	Real and illusory issues in the illusion debate (Why two things are sometimes better than one): Commentary on Kopiske etlal. (2016). <i>Cortex</i> , 2017 , 88, 205-209	3.8	15
259	Sensitivity to biomechanical limitations during postural decision-making depends on the integrity of posterior superior parietal cortex. <i>Cortex</i> , 2017 , 97, 202-220	3.8	15

258	Automatic Online Motor Control Is Intact in Parkinson® Disease With and Without Perceptual Awareness. <i>ENeuro</i> , 2017 , 4,	3.9	1
257	Echolocation in humans: an overview. Wiley Interdisciplinary Reviews: Cognitive Science, 2016, 7, 382-393	4.5	52
256	Sharpening vision by adapting to flicker. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 12556-12561	11.5	6
255	Effects of material properties and object orientation on precision grip kinematics. <i>Experimental Brain Research</i> , 2016 , 234, 2253-65	2.3	24
254	Rapid decrement in the effects of the Ponzo display dissociates action and perception. <i>Psychonomic Bulletin and Review</i> , 2016 , 23, 1157-63	4.1	21
253	A selective impairment of perception of sound motion direction in peripheral space: A case study. <i>Neuropsychologia</i> , 2016 , 80, 79-89	3.2	9
252	Unusual hand postures but not familiar tools show motor equivalence with precision grasping. <i>Cognition</i> , 2016 , 151, 28-36	3.5	5
251	Equal-magnitude size-weight illusions experienced within and between object categories. <i>Journal of Vision</i> , 2016 , 16, 25	0.4	12
250	Differences in the effects of crowding on size perception and grip scaling in densely cluttered 3-D scenes. <i>Psychological Science</i> , 2015 , 26, 58-69	7.9	21
249	The two-visual-systems hypothesis and the perspectival features of visual experience. <i>Consciousness and Cognition</i> , 2015 , 35, 225-33	2.6	35
248	Patient DFB visual brain in action: Visual feedforward control in visual form agnosia. <i>Vision Research</i> , 2015 , 110, 265-76	2.1	18
247	Time flies when we intend to act: temporal distortion in a go/no-go task. <i>Journal of Neuroscience</i> , 2015 , 35, 5023-9	6.6	15
246	A cortical network that marks the moment when conscious representations are updated. <i>Neuropsychologia</i> , 2015 , 79, 113-22	3.2	8
245	Preserved Haptic Shape Processing after Bilateral LOC Lesions. <i>Journal of Neuroscience</i> , 2015 , 35, 13745	5660	16
244	Decoding visual object categories in early somatosensory cortex. <i>Cerebral Cortex</i> , 2015 , 25, 1020-31	5.1	34
243	The size-weight illusion induced through human echolocation. <i>Psychological Science</i> , 2015 , 26, 237-42	7.9	22
242	Enhanced auditory spatial localization in blind echolocators. <i>Neuropsychologia</i> , 2015 , 67, 35-40	3.2	45
241	Parahippocampal cortex is involved in material processing via echoes in blind echolocation experts. <i>Vision Research</i> , 2015 , 109, 139-48	2.1	15

(2014-2015)

240	Transient visual responses reset the phase of low-frequency oscillations in the skeletomotor periphery. <i>European Journal of Neuroscience</i> , 2015 , 42, 1919-32	3.5	25
239	Greater magnocellular saccadic suppression in high versus low autistic tendency suggests a causal path to local perceptual style. <i>Royal Society Open Science</i> , 2015 , 2, 150226	3.3	7
238	Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps. <i>Frontiers in Human Neuroscience</i> , 2015 , 9, 216	3.3	28
237	Are there right hemisphere contributions to visually-guided movement? Manipulating left hand reaction time advantages in dextrals. <i>Frontiers in Psychology</i> , 2015 , 6, 1203	3.4	7
236	A blind human expert echolocator shows size constancy for objects perceived by echoes. <i>Neurocase</i> , 2015 , 21, 465-70	0.8	14
235	The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set. <i>Cognition</i> , 2015 , 138, 49-63	3.5	17
234	Overlapping neural circuits for visual attention and eye movements in the human cerebellum. <i>Neuropsychologia</i> , 2015 , 69, 9-21	3.2	27
233	Variability-based Garner interference for perceptual estimations but not for grasping. <i>Experimental Brain Research</i> , 2014 , 232, 1751-8	2.3	16
232	Neural correlates of motion processing through echolocation, source hearing, and vision in blind echolocation experts and sighted echolocation novices. <i>Journal of Neurophysiology</i> , 2014 , 111, 112-27	3.2	34
231	Representation of object weight in human ventral visual cortex. Current Biology, 2014, 24, 1866-73	6.3	72
230	Weightlifting exercise and the size-weight illusion. <i>Attention, Perception, and Psychophysics</i> , 2014 , 76, 452-9	2	15
229	The role of head movements in the discrimination of 2-D shape by blind echolocation experts. <i>Attention, Perception, and Psychophysics,</i> 2014 , 76, 1828-37	2	41
228	Are visual texture-selective areas recruited during haptic texture discrimination?. <i>NeuroImage</i> , 2014 , 94, 129-137	7.9	23
227	Counting on the motor system: rapid action planning reveals the format- and magnitude-dependent extraction of numerical quantity. <i>Journal of Vision</i> , 2014 , 14, 30	0.4	16
226	Temporal order judgments are disrupted more by reflexive than by voluntary saccades. <i>Journal of Neurophysiology</i> , 2014 , 111, 2103-8	3.2	3
225	How (and why) the visual control of action differs from visual perception. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2014 , 281, 20140337	4.4	90
224	The Two Visual Systems Hypothesis: New Challenges and Insights from Visual form Agnosic Patient DF. <i>Frontiers in Neurology</i> , 2014 , 5, 255	4.1	33
223	Observing object lifting errors modulates cortico-spinal excitability and improves object lifting performance. <i>Cortex</i> , 2014 , 50, 115-24	3.8	29

222	DFB visual brain in action: the role of tactile cues. Neuropsychologia, 2014, 55, 41-50	3.2	37
221	Explicit knowledge about the availability of visual feedback affects grasping with the left but not the right hand. <i>Experimental Brain Research</i> , 2014 , 232, 293-302	2.3	17
220	Gender-selective neural populations: evidence from event-related fMRI repetition suppression. <i>Experimental Brain Research</i> , 2013 , 226, 241-52	2.3	12
219	fMRI reveals a lower visual field preference for hand actions in human superior parieto-occipital cortex (SPOC) and precuneus. <i>Cortex</i> , 2013 , 49, 2525-41	3.8	55
218	Grasping without vision: time normalizing grip aperture profiles yields spurious grip scaling to target size. <i>Neuropsychologia</i> , 2013 , 51, 1878-87	3.2	15
217	Shape-specific activation of occipital cortex in an early blind echolocation expert. <i>Neuropsychologia</i> , 2013 , 51, 938-49	3.2	43
216	What is the best fixation target? The effect of target shape on stability of fixational eye movements. <i>Vision Research</i> , 2013 , 76, 31-42	2.1	154
215	When the predictive brain gets it really wrong. <i>Behavioral and Brain Sciences</i> , 2013 , 36, 208-9	0.9	4
214	Connecting the dots: object connectedness deceives perception but not movement planning. <i>Psychological Science</i> , 2013 , 24, 1456-65	7.9	16
213	Separate visual systems for perception and action: a framework for understanding cortical visual impairment. <i>Developmental Medicine and Child Neurology</i> , 2013 , 55 Suppl 4, 9-12	3.3	28
212	Perceived size change induced by nonvisual signals in darkness: the relative contribution of vergence and proprioception. <i>Journal of Neuroscience</i> , 2013 , 33, 16915-23	6.6	19
211	Size matters: a single representation underlies our perceptions of heaviness in the size-weight illusion. <i>PLoS ONE</i> , 2013 , 8, e54709	3.7	30
210	Acute alcohol consumption impairs controlled but not automatic processes in a psychophysical pointing paradigm. <i>PLoS ONE</i> , 2013 , 8, e68682	3.7	2
209	A brief review of the role of training in near-tool effects. Frontiers in Psychology, 2013, 4, 576	3.4	12
208	Sight Unseen 2013 ,		32
207	Does grasping in patient D.F. depend on vision?. <i>Trends in Cognitive Sciences</i> , 2012 , 16, 256-7; discussion 258-9	14	31
206	Handedness, laterality and the size-weight illusion. <i>Cortex</i> , 2012 , 48, 1342-50	3.8	18
205	FMRI-adaptation to highly-rendered color photographs of animals and manipulable artifacts during a classification task. <i>NeuroImage</i> , 2012 , 59, 2941-51	7.9	11

(2011-2012)

204	Retinotopic activity in V1 reflects the perceived and not the retinal size of an afterimage. <i>Nature Neuroscience</i> , 2012 , 15, 540-2	25.5	105
203	Brain areas involved in echolocation motion processing in blind echolocation experts. <i>Seeing and Perceiving</i> , 2012 , 25, 140		
202	Afterimage size is modulated by size-contrast illusions. Journal of Vision, 2012, 12,	0.4	21
201	Retinotopic organization of the visual cortex before and after decompression of the optic chiasm in a patient with pituitary macroadenoma. <i>Journal of Neurosurgery</i> , 2012 , 117, 218-24	3.2	12
200	The role of vision in detecting and correcting fingertip force errors during object lifting. <i>Journal of Vision</i> , 2011 , 11, 4	0.4	26
199	Neural substrates of visual spatial coding and visual feedback control for hand movements in allocentric and target-directed tasks. <i>Frontiers in Human Neuroscience</i> , 2011 , 5, 92	3.3	30
198	Bringing the real world into the fMRI scanner: repetition effects for pictures versus real objects. <i>Scientific Reports</i> , 2011 , 1, 130	4.9	87
197	Mental blocks: fMRI reveals top-down modulation of early visual cortex when obstacles interfere with grasp planning. <i>Neuropsychologia</i> , 2011 , 49, 1703-17	3.2	29
196	Programs for action in superior parietal cortex: a triple-pulse TMS investigation. <i>Neuropsychologia</i> , 2011 , 49, 2391-9	3.2	28
195	Impaired delayed but preserved immediate grasping in a neglect patient with parieto-occipital lesions. <i>Neuropsychologia</i> , 2011 , 49, 2498-504	3.2	12
194	Transforming vision into action. Vision Research, 2011, 51, 1567-87	2.1	240
193	Converging evidence for diverging pathways: neuropsychology and psychophysics tell the same story. <i>Vision Research</i> , 2011 , 51, 804-11	2.1	52
192	Grasping the non-conscious: preserved grip scaling to unseen objects for immediate but not delayed grasping following a unilateral lesion to primary visual cortex. <i>Vision Research</i> , 2011 , 51, 908-24	4 ^{2.1}	35
191	The role of apparent size in building- and object-specific regions of ventral visual cortex. <i>Brain Research</i> , 2011 , 1388, 109-22	3.7	35
190	The role of online visual feedback for the control of target-directed and allocentric hand movements. <i>Journal of Neurophysiology</i> , 2011 , 105, 846-59	3.2	10
189	The material-weight illusion induced by expectations alone. <i>Attention, Perception, and Psychophysics</i> , 2011 , 73, 36-41	2	34
188	Selection of wrist posture in conditions of motor ambiguity. Experimental Brain Research, 2011, 208, 60	7-219	8
187	Integration of visual and auditory information for hand actions: preliminary evidence for the contribution of natural sounds to grasping. <i>Experimental Brain Research</i> , 2011 , 209, 365-74	2.3	24

186	Reaction times for allocentric movements are 35 lms slower than reaction times for target-directed movements. <i>Experimental Brain Research</i> , 2011 , 211, 313-28	2.3	11
185	One to four, and nothing more: nonconscious parallel individuation of objects during action planning. <i>Psychological Science</i> , 2011 , 22, 803-11	7.9	46
184	Neural correlates of natural human echolocation in early and late blind echolocation experts. <i>PLoS ONE</i> , 2011 , 6, e20162	3.7	138
183	Visual salience dominates early visuomotor competition in reaching behavior. <i>Journal of Vision</i> , 2011 , 11,	0.4	27
182	Scratching beneath the surface: new insights into the functional properties of the lateral occipital area and parahippocampal place area. <i>Journal of Neuroscience</i> , 2011 , 31, 8248-58	6.6	83
181	Face inversion reduces the persistence of global form and its neural correlates. <i>PLoS ONE</i> , 2011 , 6, e18	79 <i>5</i> 7	15
180	Beyond distance and direction: the brain represents target locations non-metrically. <i>Journal of Vision</i> , 2010 , 10, 3.1-27	0.4	19
179	Obstacle avoidance during online corrections. <i>Journal of Vision</i> , 2010 , 10, 17	0.4	16
178	Two visual streams: Interconnections do not imply duplication of function. <i>Cognitive Neuroscience</i> , 2010 , 1, 65-8	1.7	15
177	Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans. <i>Journal of Neuroscience</i> , 2010 , 30, 10306-23	6.6	243
176	Short-term motor plasticity revealed in a visuomotor decision-making task. <i>Behavioural Brain Research</i> , 2010 , 214, 130-4	3.4	26
175	Integration of haptic and visual size cues in perception and action revealed through cross-modal conflict. <i>Experimental Brain Research</i> , 2010 , 201, 863-73	2.3	36
174	Contribution of visual and proprioceptive information to the precision of reaching movements. <i>Experimental Brain Research</i> , 2010 , 202, 15-32	2.3	33
173	Seeing all the obstacles in your way: the effect of visual feedback and visual feedback schedule on obstacle avoidance while reaching. <i>Experimental Brain Research</i> , 2010 , 202, 363-75	2.3	20
172	Can intention override the "automatic pilot"?. Experimental Brain Research, 2010, 202, 623-32	2.3	11
171	The influence of competing perceptual and motor priors in the context of the size-weight illusion. <i>Experimental Brain Research</i> , 2010 , 205, 283-8	2.3	37
170	Category-specific neural processing for naming pictures of animals and naming pictures of tools: an ALE meta-analysis. <i>Neuropsychologia</i> , 2010 , 48, 409-18	3.2	56
169	Reaching for the unknown: multiple target encoding and real-time decision-making in a rapid reach task. <i>Cognition</i> , 2010 , 116, 168-76	3.5	96

(2009-2010)

168	Lifting without seeing: the role of vision in perceiving and acting upon the size weight illusion. <i>PLoS ONE</i> , 2010 , 5, e9709	3.7	67
167	Cortical visual systems for perception and action* 2010 , 71-94		6
166	Asymmetric interference between the perception of shape and the perception of surface properties. <i>Journal of Vision</i> , 2009 , 9, 13.1-20	0.4	9
165	"Real-time" obstacle avoidance in the absence of primary visual cortex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 15996-6001	11.5	35
164	Living in a material world: how visual cues to material properties affect the way that we lift objects and perceive their weight. <i>Journal of Neurophysiology</i> , 2009 , 102, 3111-8	3.2	120
163	Vision in the palm of your hand. <i>Neuropsychologia</i> , 2009 , 47, 1621-6	3.2	22
162	Enhanced detection of visual targets on the hand and familiar tools. <i>Neuropsychologia</i> , 2009 , 47, 2454-	63 _{3.2}	38
161	Abnormal face identity coding in the middle fusiform gyrus of two brain-damaged prosopagnosic patients. <i>Neuropsychologia</i> , 2009 , 47, 2584-92	3.2	43
160	Hand preference for precision grasping predicts language lateralization. <i>Neuropsychologia</i> , 2009 , 47, 3182-9	3.2	68
159	The lateral-occipital and the inferior-frontal cortex play different roles during the naming of visually presented objects. <i>Human Brain Mapping</i> , 2009 , 30, 3851-64	5.9	30
158	fMR-adaptation reveals separate processing regions for the perception of form and texture in the human ventral stream. <i>Experimental Brain Research</i> , 2009 , 192, 391-405	2.3	86
157	Updating the programming of a precision grip is a function of recent history of available feedback. <i>Experimental Brain Research</i> , 2009 , 194, 619-29	2.3	37
156	Differential effects of delay upon visually and haptically guided grasping and perceptual judgments. <i>Experimental Brain Research</i> , 2009 , 195, 473-9	2.3	15
155	An investigation of auditory contagious yawning. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2009 , 9, 335-42	3.5	46
154	Why color synesthesia involves more than color. <i>Trends in Cognitive Sciences</i> , 2009 , 13, 288-92	14	54
153	Dissociable neural mechanisms for determining the perceived heaviness of objects and the predicted weight of objects during lifting: an fMRI investigation of the size-weight illusion. <i>NeuroImage</i> , 2009 , 44, 200-12	7.9	66
152	FMRI adaptation during performance of learned arbitrary visuomotor conditional associations. <i>NeuroImage</i> , 2009 , 48, 696-706	7.9	25
151	Preserved striate cortex is not sufficient to support the McCollough effect: evidence from two patients with cerebral achromatopsia. <i>Perception</i> , 2009 , 38, 1741-8	1.2	

150	Direct effects of prismatic lenses on visuomotor control: an event-related functional MRI study. <i>European Journal of Neuroscience</i> , 2008 , 28, 1696-704	3.5	94
149	Practice makes perfect, but only with the right hand: sensitivity to perceptual illusions with awkward grasps decreases with practice in the right but not the left hand. <i>Neuropsychologia</i> , 2008 , 46, 624-31	3.2	76
148	Two visual systems re-viewed. <i>Neuropsychologia</i> , 2008 , 46, 774-85	3.2	938
147	A hand in blindsight: hand placement near target improves size perception in the blind visual field. <i>Neuropsychologia</i> , 2008 , 46, 786-802	3.2	36
146	Koniocellular projections and hand-assisted blindsight. <i>Neuropsychologia</i> , 2008 , 46, 3241-2	3.2	3
145	Repetition suppression in occipital-temporal visual areas is modulated by physical rather than semantic features of objects. <i>NeuroImage</i> , 2008 , 41, 130-44	7.9	42
144	Crinkling and crumpling: an auditory fMRI study of material properties. <i>NeuroImage</i> , 2008 , 43, 368-78	7.9	37
143	Action without perception in human vision. <i>Cognitive Neuropsychology</i> , 2008 , 25, 891-919	2.3	86
142	A double dissociation between action and perception in the context of visual illusions: opposite effects of real and illusory size. <i>Psychological Science</i> , 2008 , 19, 221-5	7.9	92
141	Action rules: why the visual control of reaching and grasping is not always influenced by perceptual illusions. <i>Perception</i> , 2008 , 37, 355-66	1.2	13
140	Independent processing of form, colour, and texture in object perception. <i>Perception</i> , 2008 , 37, 57-78	1.2	85
139	The intermanual transfer of anticipatory force control in precision grip lifting is not influenced by the perception of weight. <i>Experimental Brain Research</i> , 2008 , 185, 319-29	2.3	32
138	Grasping future events: explicit knowledge of the availability of visual feedback fails to reliably influence prehension. <i>Experimental Brain Research</i> , 2008 , 188, 603-11	2.3	51
137	Missing in action: the effect of obstacle position and size on avoidance while reaching. <i>Experimental Brain Research</i> , 2008 , 191, 83-97	2.3	48
136	Voice recognition and the posterior cingulate: an fMRI study of prosopagnosia. <i>Journal of Neuropsychology</i> , 2008 , 2, 269-86	2.6	17
135	Dual-task interference is greater in delayed grasping than in visually guided grasping. <i>Journal of Vision</i> , 2007 , 7, 5.1-12	0.4	39
134	Left handedness does not extend to visually guided precision grasping. <i>Experimental Brain Research</i> , 2007 , 182, 275-9	2.3	75
133	Motor force field learning influences visual processing of target motion. <i>Journal of Neuroscience</i> , 2007 , 27, 9975-83	6.6	34

132	Attention to form or surface properties modulates different regions of human occipitotemporal cortex. <i>Cerebral Cortex</i> , 2007 , 17, 713-31	5.1	239
131	Coming to grips with vision and touch. Behavioral and Brain Sciences, 2007, 30, 209-210	0.9	3
130	Visually guided reaching depends on motion area MT+. Cerebral Cortex, 2007, 17, 2644-9	5.1	70
129	Functional reorganization in the adult brain. <i>Neuron</i> , 2007 , 54, 352-3	13.9	4
128	Effector-specific fields for motor preparation in the human frontal cortex. Neurolmage, 2007, 34, 1209-	19. 9	40
127	Orientation sensitivity to graspable objects: an fMRI adaptation study. <i>NeuroImage</i> , 2007 , 36 Suppl 2, T87-93	7.9	52
126	FMRI reveals a dissociation between grasping and perceiving the size of real 3D objects. <i>PLoS ONE</i> , 2007 , 2, e424	3.7	107
125	Differential effects of advance semantic cues on grasping, naming, and manual estimation. <i>Experimental Brain Research</i> , 2006 , 175, 139-52	2.3	16
124	Distorting visual space with sound. <i>Vision Research</i> , 2006 , 46, 1553-8	2.1	22
123	Dissociation of perception and action unmasked by the hollow-face illusion. <i>Brain Research</i> , 2006 , 1080, 9-16	3.7	74
122	A double dissociation between sensitivity to changes in object identity and object orientation in the ventral and dorsal visual streams: a human fMRI study. <i>Neuropsychologia</i> , 2006 , 44, 218-28	3.2	133
121	The fusiform face area is not sufficient for face recognition: evidence from a patient with dense prosopagnosia and no occipital face area. <i>Neuropsychologia</i> , 2006 , 44, 594-609	3.2	177
120	Pointing to places and spaces in a patient with visual form agnosia. <i>Neuropsychologia</i> , 2006 , 44, 1584-94	1 3.2	53
119	Dissociating arbitrary stimulus-response mapping from movement planning during preparatory period: evidence from event-related functional magnetic resonance imaging. <i>Journal of Neuroscience</i> , 2006 , 26, 2704-13	6.6	81
118	The relationship between fMRI adaptation and repetition priming. NeuroImage, 2006, 32, 1432-40	7.9	46
117	Hemispheric specialization for the visual control of action is independent of handedness. <i>Journal of Neurophysiology</i> , 2006 , 95, 3496-501	3.2	127
116	Interactions between the processing of gaze direction and facial expression. <i>Vision Research</i> , 2005 , 45, 1191-200	2.1	56
115	Action insight: the role of the dorsal stream in the perception of grasping. <i>Neuron</i> , 2005 , 47, 328-9	13.9	8

114	Bimanual interference in rapid discrete movements is task specific and occurs at multiple levels of processing. <i>Journal of Neurophysiology</i> , 2005 , 94, 1861-8	3.2	21
113	No evidence for visuomotor priming in a visually guided action task. <i>Neuropsychologia</i> , 2005 , 43, 216-26	3.2	43
112	The involvement of the "fusiform face area" in processing facial expression. <i>Neuropsychologia</i> , 2005 , 43, 1645-54	3.2	142
111	Visual motion due to eye movements helps guide the hand. <i>Experimental Brain Research</i> , 2005 , 162, 394	1- <u>4.</u> 690	38
110	The effects of landmarks on the performance of delayed and real-time pointing movements. <i>Experimental Brain Research</i> , 2005 , 167, 335-44	2.3	63
109	A model of the coupling between grip aperture and hand transport during human prehension. <i>Experimental Brain Research</i> , 2005 , 167, 301-4	2.3	16
108	Peripheral vision for perception and action. Experimental Brain Research, 2005, 165, 97-106	2.3	56
107	fMRI activation in the human frontal eye field is correlated with saccadic reaction time. <i>Journal of Neurophysiology</i> , 2005 , 94, 605-11	3.2	105
106	Dual routes to action: contributions of the dorsal and ventral streams to adaptive behavior. <i>Progress in Brain Research</i> , 2005 , 149, 269-83	2.9	72
105	Behavioral and neuroimaging evidence for a contribution of color and texture information to scene classification in a patient with visual form agnosia. <i>Journal of Cognitive Neuroscience</i> , 2004 , 16, 955-65	3.1	68
104	Spared somatomotor and cognitive functions in a patient with a large porencephalic cyst revealed by fMRI. <i>Neuropsychologia</i> , 2004 , 42, 405-18	3.2	6
103	An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. <i>Current Opinion in Neurobiology</i> , 2004 , 14, 203-11	7.6	342
102	When two eyes are better than one in prehension: monocular viewing and end-point variance. <i>Experimental Brain Research</i> , 2004 , 158, 317-27	2.3	73
101	Naming and grasping common objects: a priming study. <i>Experimental Brain Research</i> , 2004 , 159, 55-64	2.3	24
100	Two distinct modes of control for object-directed action. <i>Progress in Brain Research</i> , 2004 , 144, 131-44	2.9	142
99	Plans for action. Behavioral and Brain Sciences, 2004, 27,	0.9	26
98	Comparison of memory- and visually guided saccades using event-related fMRI. <i>Journal of Neurophysiology</i> , 2004 , 91, 873-89	3.2	84
97	Flexible retinotopy: motion-dependent position coding in the visual cortex. <i>Science</i> , 2003 , 302, 878-81	33.3	127

96	Perceptual illusion and the real-time control of action. Spatial Vision, 2003, 16, 243-54		227
95	The effects of different aperture-viewing conditions on the recognition of novel objects. <i>Perception</i> , 2003 , 32, 1169-79	1.2	5
94	Target selection for reaching and saccades share a similar behavioral reference frame in the macaque. <i>Journal of Neurophysiology</i> , 2003 , 89, 1456-66	3.2	50
93	FMRI evidence for a Pparietal reach regionPin the human brain. Experimental Brain Research, 2003, 153, 140-5	2.3	338
92	Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. <i>Experimental Brain Research</i> , 2003 , 153, 180-9	2.3	542
91	A haptic size-contrast illusion affects size perception but not grasping. <i>Experimental Brain Research</i> , 2003 , 153, 253-9	2.3	50
90	Measuring unconscious actions in action-blindsight: exploring the kinematics of pointing movements to targets in the blind field of two patients with cortical hemianopia. <i>Neuropsychologia</i> , 2003 , 41, 1068-81	3.2	27
89	The influence of visual motion on fast reaching movements to a stationary object. <i>Nature</i> , 2003 , 423, 869-73	50.4	120
88	Visual control of action but not perception requires analytical processing of object shape. <i>Nature</i> , 2003 , 426, 664-7	50.4	155
87	Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. <i>Brain</i> , 2003 , 126, 2463-75	11.2	473
86	Interactions between the dorsal and ventral streams of visual processing. <i>Advances in Neurology</i> , 2003 , 93, 249-67		11
85	Haptic study of three-dimensional objects activates extrastriate visual areas. <i>Neuropsychologia</i> , 2002 , 40, 1706-14	3.2	332
84	Understanding the contribution of binocular vision to the control of adaptive locomotion. <i>Experimental Brain Research</i> , 2002 , 142, 551-61	2.3	57
83	Grasping two-dimensional images and three-dimensional objects in visual-form agnosia. <i>Experimental Brain Research</i> , 2002 , 144, 262-7	2.3	52
82	A temporal analysis of grasping in the Ebbinghaus illusion: planning versus online control. <i>Experimental Brain Research</i> , 2002 , 144, 275-80	2.3	53
81	Learned perceptual associations influence visuomotor programming under limited conditions: cues as surface patterns. <i>Experimental Brain Research</i> , 2002 , 147, 473-84	2.3	6
80	Learned perceptual associations influence visuomotor programming under limited conditions: kinematic consistency. <i>Experimental Brain Research</i> , 2002 , 147, 485-93	2.3	10
79	Human fMRI evidence for the neural correlates of preparatory set. <i>Nature Neuroscience</i> , 2002 , 5, 1345-5	52 5.5	284

78	Selective, non-lateralized impairment of motor imagery following right parietal damage. <i>Neurocase</i> , 2002 , 8, 194-204	0.8	51
77	Differential effects of viewpoint on object-driven activation in dorsal and ventral streams. <i>Neuron</i> , 2002 , 35, 793-801	13.9	233
76	Selective, Non-lateralized Impairment of Motor Imagery Following Right Parietal Damage. <i>Neurocase</i> , 2002 , 8, 194-204	0.8	27
75	Manipulating and recognizing virtual objects: where the action is. <i>Canadian Journal of Experimental Psychology</i> , 2001 , 55, 111-20	0.8	70
74	Different spaces and different times for perception and action. <i>Progress in Brain Research</i> , 2001 , 134, 313-31	2.9	16
73	Why Vision is More than Seeing. <i>Canadian Journal of Philosophy Supplementary Volume</i> , 2001 , 27, 186-2	14	
72	Superior performance for visually guided pointing in the lower visual field. <i>Experimental Brain Research</i> , 2001 , 137, 303-8	2.3	117
71	The dissociation between perception and action in the Ebbinghaus illusion: nonillusory effects of pictorial cues on grasp. <i>Current Biology</i> , 2001 , 11, 177-81	6.3	198
70	Real action in a virtual world. Behavioral and Brain Sciences, 2001, 24, 984-985	0.9	3
69	Perception and action planning: Getting it together. <i>Behavioral and Brain Sciences</i> , 2001 , 24, 907-908	0.9	1
68	A conscious route to unconscious vision. <i>Current Biology</i> , 2000 , 10, R64-7	6.3	26
67	A visible difference. <i>Current Biology</i> , 2000 , 10, R46-7	6.3	2
66	The effects of visual object priming on brain activation before and after recognition. <i>Current Biology</i> , 2000 , 10, 1017-24	6.3	153
65	An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings. <i>Current Biology</i> , 2000 , 10, 1455-8	6.3	206
64	A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. <i>Journal of Neurophysiology</i> , 2000 , 84, 1645-55	3.2	250
63	Grasping after a delay shifts size-scaling from absolute to relative metrics. <i>Journal of Cognitive Neuroscience</i> , 2000 , 12, 856-68	3.1	233
62	The effect of learned perceptual associations on visuomotor programming varies with kinematic demands. <i>Journal of Cognitive Neuroscience</i> , 2000 , 12, 950-64	3.1	17
61	Independent effects of pictorial displays on perception and action. Vision Research, 2000, 40, 1597-607	2.1	92

60	Visual search selectively enhances recognition of the search target. Visual Cognition, 2000, 7, 769-784	1.8	3
59	Recovery of fMRI activation in motion area MT following storage of the motion aftereffect. <i>Journal of Neurophysiology</i> , 1999 , 81, 388-93	3.2	99
58	Perception of the Mccollough Effect Correlates with Activity in Extrastriate Cortex: A Functional Magnetic Resonance Imaging Study. <i>Psychological Science</i> , 1999 , 10, 444-448	7.9	20
57	The role of visual feedback of hand position in the control of manual prehension. <i>Experimental Brain Research</i> , 1999 , 125, 281-6	2.3	90
56	The effects of delay on the kinematics of grasping. Experimental Brain Research, 1999, 126, 109-16	2.3	148
55	Active manual control of object views facilitates visual recognition. <i>Current Biology</i> , 1999 , 9, 1315-8	6.3	157
54	Repetition priming and the time course of object recognition: an fMRI study. NeuroReport, 1999, 10, 10	1 9/2 3	35
53	Frames of reference for perception and action in the human visual system. <i>Neuroscience and Biobehavioral Reviews</i> , 1998 , 22, 161-72	9	101
52	The objects of action and perception. <i>Cognition</i> , 1998 , 67, 181-207	3.5	240
51	Does a monocularly presented size-contrast illusion influence grip aperture?. <i>Neuropsychologia</i> , 1998 , 36, 491-7	3.2	79
50	Visuomotor control: where does vision end and action begin?. Current Biology, 1998, 8, R489-91	6.3	49
49	Probing unconscious visual processing with the McCollough effect. <i>Consciousness and Cognition</i> , 1998 , 7, 494-519	2.6	53
48	Oral contraceptive use affects manual praxis but not simple visually guided movements. <i>Developmental Neuropsychology</i> , 1998 , 14, 399-420	1.8	12
47	The effect of pictorial illusion on prehension and perception. <i>Journal of Cognitive Neuroscience</i> , 1998 , 10, 122-36	3.1	316
46	Near, far, or in between?-Target edges and the transport component of prehension. <i>Journal of Motor Behavior</i> , 1998 , 30, 90-3	1.4	7
45	Vision for perception and vision for action in the primate brain. <i>Novartis Foundation Symposium</i> , 1998 , 218, 21-34; discussion 34-9		18
44	Differences in perceived shape from shading correlate with activity in early visual areas. <i>Current Biology</i> , 1997 , 7, 144-7	6.3	106
43	The removal of binocular cues disrupts the calibration of grasping in patients with visual form agnosia. <i>Experimental Brain Research</i> , 1997 , 116, 113-21	2.3	82

42	A neurological dissociation between shape from shading and shape from edges. <i>Behavioural Brain Research</i> , 1996 , 76, 117-25	3.4	57
41	Obstacle avoidance during locomotion is unaffected in a patient with visual form agnosia. <i>NeuroReport</i> , 1996 , 8, 165-8	1.7	63
40	Reaching to ipsilateral or contralateral targets: within-hemisphere visuomotor processing cannot explain hemispatial differences in motor control. <i>Experimental Brain Research</i> , 1996 , 112, 496-504	2.3	82
39	The Visual Pathways Mediating Perception and Prehension 1996 , 15-31		5
38	Preserved visual imagery in visual form agnosia. <i>Neuropsychologia</i> , 1995 , 33, 1383-94	3.2	74
37	Image and brain: the resolution of the imagery debate. <i>Journal of Cognitive Neuroscience</i> , 1995 , 7, 415-	203.1	2
36	Dissociation between two modes of spatial processing by a visual form agnosic. <i>NeuroReport</i> , 1995 , 6, 1893-6	1.7	77
35	The McCollough effect reveals orientation discrimination in a case of cortical blindness. <i>Current Biology</i> , 1995 , 5, 545-51	6.3	62
34	Size-contrast illusions deceive the eye but not the hand. Current Biology, 1995, 5, 679-85	6.3	866
33	The nature and limits of orientation and pattern processing supporting visuomotor control in a visual form agnosic. <i>Journal of Cognitive Neuroscience</i> , 1994 , 6, 46-56	3.1	146
32	Differences in the visual control of pantomimed and natural grasping movements. <i>Neuropsychologia</i> , 1994 , 32, 1159-78	3.2	509
31	Separate neural pathways for the visual analysis of object shape in perception and prehension. <i>Current Biology</i> , 1994 , 4, 604-10	6.3	410
30	The role of surface information in object recognition: studies of a visual form agnosic and normal subjects. <i>Perception</i> , 1994 , 23, 1457-81	1.2	181
29	Visual pathways supporting perception and action in the primate cerebral cortex. <i>Current Opinion in Neurobiology</i> , 1993 , 3, 578-85	7.6	124
28	Visual pathways to perception and action. <i>Progress in Brain Research</i> , 1993 , 95, 317-37	2.9	220
27	Grasping versus pointing and the differential use of visual feedback. <i>Human Movement Science</i> , 1993 , 12, 219-234	2.4	42
26	Now you see it, now you don®: How delaying an action system can transform a theory. <i>Behavioral and Brain Sciences</i> , 1992 , 15, 335-336	0.9	33
25	Separate visual pathways for perception and action. <i>Trends in Neurosciences</i> , 1992 , 15, 20-5	13.3	4378

24	The role of binocular vision in prehension: a kinematic analysis. Vision Research, 1992, 32, 1513-21	2.1	229
23	A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. <i>Neuropsychologia</i> , 1991 , 29, 803-9	3.2	293
22	A neurological dissociation between perceiving objects and grasping them. <i>Nature</i> , 1991 , 349, 154-6	50.4	1211
21	Orientation Discrimination in a Visual Form Agnosic: Evidence from the McCollough Effect. <i>Psychological Science</i> , 1991 , 2, 331-335	7.9	51
20	Computation of Absolute Distance in the Mongolian Gerbil (Meriones unguiculatus): Depth Algorithms and Neural Substrates. <i>Research Notes in Neural Computing</i> , 1991 , 205-219		1
19	Kinematic analysis of limb movements in neuropsychological research: subtle deficits and recovery of function. <i>Canadian Journal of Psychology</i> , 1990 , 44, 180-95		100
18	The role of image size and retinal motion in the computation of absolute distance by the Mongolian gerbil (Meriones unguiculatus). <i>Vision Research</i> , 1990 , 30, 399-413	2.1	75
17	Blindsight in rodents: the use of a Phigh-levelPdistance cue in gerbils with lesions of primary visual cortex. <i>Behavioural Brain Research</i> , 1990 , 38, 283-9	3.4	11
16	The effects of instructions to subjects on the programming of visually directed reaching movements. <i>Journal of Motor Behavior</i> , 1989 , 21, 5-19	1.4	33
15	Left-sided oral asymmetries in spontaneous but not posed smiles. <i>Neuropsychologia</i> , 1988 , 26, 823-32	3.2	40
14	The effects of time and distance on accuracy of target-directed locomotion: does an accurate short-term memory for spatial location exist?. <i>Journal of Motor Behavior</i> , 1988 , 20, 399-415	1.4	94
13	Hemispheric differences in motor control. <i>Behavioural Brain Research</i> , 1988 , 30, 203-14	3.4	75
12	Oral asymmetries during verbal and non-verbal movements of the mouth. <i>Neuropsychologia</i> , 1987 , 25, 375-96	3.2	76
11	Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. <i>Nature</i> , 1986 , 320, 748-50	50.4	882
10	The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space. <i>Experimental Brain Research</i> , 1985 , 60, 159-78	2.3	242
9	Interocular transfer in the pigeon after lesions of the dorsal supraoptic decussation. <i>Behavioural Brain Research</i> , 1985 , 16, 1-7	3.4	8
8	Distance estimation in the Mongolian gerbil: the role of dynamic depth cues. <i>Behavioural Brain Research</i> , 1984 , 14, 29-39	3.4	97
7	Visually guided pecking in the pigeon (Columba livia). <i>Brain, Behavior and Evolution</i> , 1983 , 22, 22-41	1.5	121

6	Visual sampling after lesions of the superior colliculus in rats. <i>Journal of Comparative and Physiological Psychology</i> , 1979 , 93, 1015-23	66
5	The effects of lesions of the superior colliculus on locomotor orientation and the orienting reflex in the rat. <i>Brain Research</i> , 1975 , 88, 243-61	224
4	Separate Visual Systems for Action and Perception311-343	1
3	Temporal evolution from retinal image size to perceived size in human visual cortex	1
2	The role of animal faces in the animate-inanimate distinction in the ventral temporal cortex	2
1	Duplex Vision: Separate Cortical Pathways for Conscious Perception and the Control of Action616-627	7