Melvyn A Goodale

List of Publications by Citations

Source: https://exaly.com/author-pdf/836492/melvyn-a-goodale-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

293 papers

26,140 citations

76 h-index 156 g-index

338 ext. papers

29,588 ext. citations

avg, IF

7.25 L-index

#	Paper	IF	Citations
293	Separate visual pathways for perception and action. <i>Trends in Neurosciences</i> , 1992 , 15, 20-5	13.3	4378
292	A neurological dissociation between perceiving objects and grasping them. <i>Nature</i> , 1991 , 349, 154-6	50.4	1211
291	Two visual systems re-viewed. <i>Neuropsychologia</i> , 2008 , 46, 774-85	3.2	938
2 90	Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. <i>Nature</i> , 1986 , 320, 748-50	50.4	882
289	Size-contrast illusions deceive the eye but not the hand. <i>Current Biology</i> , 1995 , 5, 679-85	6.3	866
288	Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. <i>Experimental Brain Research</i> , 2003 , 153, 180-9	2.3	542
287	Differences in the visual control of pantomimed and natural grasping movements. <i>Neuropsychologia</i> , 1994 , 32, 1159-78	3.2	509
286	Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. <i>Brain</i> , 2003 , 126, 2463-75	11.2	473
285	Separate neural pathways for the visual analysis of object shape in perception and prehension. <i>Current Biology</i> , 1994 , 4, 604-10	6.3	410
284	An evolving view of duplex vision: separate but interacting cortical pathways for perception and action. <i>Current Opinion in Neurobiology</i> , 2004 , 14, 203-11	7.6	342
283	FMRI evidence for a Pparietal reach regionPin the human brain. Experimental Brain Research, 2003 , 153, 140-5	2.3	338
282	Haptic study of three-dimensional objects activates extrastriate visual areas. <i>Neuropsychologia</i> , 2002 , 40, 1706-14	3.2	332
281	The effect of pictorial illusion on prehension and perception. <i>Journal of Cognitive Neuroscience</i> , 1998 , 10, 122-36	3.1	316
280	A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. <i>Neuropsychologia</i> , 1991 , 29, 803-9	3.2	293
279	Human fMRI evidence for the neural correlates of preparatory set. <i>Nature Neuroscience</i> , 2002 , 5, 1345-	52 5.5	284
278	A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. <i>Journal of Neurophysiology</i> , 2000 , 84, 1645-55	3.2	250
277	Functional magnetic resonance imaging reveals the neural substrates of arm transport and grip formation in reach-to-grasp actions in humans. <i>Journal of Neuroscience</i> , 2010 , 30, 10306-23	6.6	243

(2000-1985)

276	The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space. <i>Experimental Brain Research</i> , 1985 , 60, 159-78	2.3	242
275	Transforming vision into action. <i>Vision Research</i> , 2011 , 51, 1567-87	2.1	240
274	The objects of action and perception. <i>Cognition</i> , 1998 , 67, 181-207	3.5	240
273	Attention to form or surface properties modulates different regions of human occipitotemporal cortex. <i>Cerebral Cortex</i> , 2007 , 17, 713-31	5.1	239
272	Differential effects of viewpoint on object-driven activation in dorsal and ventral streams. <i>Neuron</i> , 2002 , 35, 793-801	13.9	233
271	Grasping after a delay shifts size-scaling from absolute to relative metrics. <i>Journal of Cognitive Neuroscience</i> , 2000 , 12, 856-68	3.1	233
270	The role of binocular vision in prehension: a kinematic analysis. Vision Research, 1992, 32, 1513-21	2.1	229
269	Perceptual illusion and the real-time control of action. <i>Spatial Vision</i> , 2003 , 16, 243-54		227
268	The effects of lesions of the superior colliculus on locomotor orientation and the orienting reflex in the rat. <i>Brain Research</i> , 1975 , 88, 243-61	3.7	224
267	Visual pathways to perception and action. <i>Progress in Brain Research</i> , 1993 , 95, 317-37	2.9	220
266	An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings. <i>Current Biology</i> , 2000 , 10, 1455-8	6.3	206
265	The dissociation between perception and action in the Ebbinghaus illusion: nonillusory effects of pictorial cues on grasp. <i>Current Biology</i> , 2001 , 11, 177-81	6.3	198
264	The role of surface information in object recognition: studies of a visual form agnosic and normal subjects. <i>Perception</i> , 1994 , 23, 1457-81	1.2	181
263	The fusiform face area is not sufficient for face recognition: evidence from a patient with dense prosopagnosia and no occipital face area. <i>Neuropsychologia</i> , 2006 , 44, 594-609	3.2	177
262	Active manual control of object views facilitates visual recognition. <i>Current Biology</i> , 1999 , 9, 1315-8	6.3	157
261	Visual control of action but not perception requires analytical processing of object shape. <i>Nature</i> , 2003 , 426, 664-7	50.4	155
260	What is the best fixation target? The effect of target shape on stability of fixational eye movements. <i>Vision Research</i> , 2013 , 76, 31-42	2.1	154
259	The effects of visual object priming on brain activation before and after recognition. <i>Current Biology</i> , 2000 , 10, 1017-24	6.3	153

258	The effects of delay on the kinematics of grasping. Experimental Brain Research, 1999, 126, 109-16	2.3	148
257	The nature and limits of orientation and pattern processing supporting visuomotor control in a visual form agnosic. <i>Journal of Cognitive Neuroscience</i> , 1994 , 6, 46-56	3.1	146
256	Two distinct modes of control for object-directed action. <i>Progress in Brain Research</i> , 2004 , 144, 131-44	2.9	142
255	The involvement of the "fusiform face area" in processing facial expression. <i>Neuropsychologia</i> , 2005 , 43, 1645-54	3.2	142
254	Neural correlates of natural human echolocation in early and late blind echolocation experts. <i>PLoS ONE</i> , 2011 , 6, e20162	3.7	138
253	A double dissociation between sensitivity to changes in object identity and object orientation in the ventral and dorsal visual streams: a human fMRI study. <i>Neuropsychologia</i> , 2006 , 44, 218-28	3.2	133
252	Hemispheric specialization for the visual control of action is independent of handedness. <i>Journal of Neurophysiology</i> , 2006 , 95, 3496-501	3.2	127
251	Flexible retinotopy: motion-dependent position coding in the visual cortex. <i>Science</i> , 2003 , 302, 878-81	33.3	127
250	Visual pathways supporting perception and action in the primate cerebral cortex. <i>Current Opinion in Neurobiology</i> , 1993 , 3, 578-85	7.6	124
249	Visually guided pecking in the pigeon (Columba livia). Brain, Behavior and Evolution, 1983, 22, 22-41	1.5	121
248	Living in a material world: how visual cues to material properties affect the way that we lift objects and perceive their weight. <i>Journal of Neurophysiology</i> , 2009 , 102, 3111-8	3.2	120
247	The influence of visual motion on fast reaching movements to a stationary object. <i>Nature</i> , 2003 , 423, 869-73	50.4	120
246	Superior performance for visually guided pointing in the lower visual field. <i>Experimental Brain Research</i> , 2001 , 137, 303-8	2.3	117
245	FMRI reveals a dissociation between grasping and perceiving the size of real 3D objects. <i>PLoS ONE</i> , 2007 , 2, e424	3.7	107
244	Differences in perceived shape from shading correlate with activity in early visual areas. <i>Current Biology</i> , 1997 , 7, 144-7	6.3	106
243	Retinotopic activity in V1 reflects the perceived and not the retinal size of an afterimage. <i>Nature Neuroscience</i> , 2012 , 15, 540-2	25.5	105
242	fMRI activation in the human frontal eye field is correlated with saccadic reaction time. <i>Journal of Neurophysiology</i> , 2005 , 94, 605-11	3.2	105
241	Frames of reference for perception and action in the human visual system. <i>Neuroscience and Biobehavioral Reviews</i> , 1998 , 22, 161-72	9	101

(1996-1990)

240	Kinematic analysis of limb movements in neuropsychological research: subtle deficits and recovery of function. <i>Canadian Journal of Psychology</i> , 1990 , 44, 180-95		100
239	Recovery of fMRI activation in motion area MT following storage of the motion aftereffect. <i>Journal of Neurophysiology</i> , 1999 , 81, 388-93	3.2	99
238	Distance estimation in the Mongolian gerbil: the role of dynamic depth cues. <i>Behavioural Brain Research</i> , 1984 , 14, 29-39	3.4	97
237	Reaching for the unknown: multiple target encoding and real-time decision-making in a rapid reach task. <i>Cognition</i> , 2010 , 116, 168-76	3.5	96
236	Direct effects of prismatic lenses on visuomotor control: an event-related functional MRI study. European Journal of Neuroscience, 2008 , 28, 1696-704	3.5	94
235	The effects of time and distance on accuracy of target-directed locomotion: does an accurate short-term memory for spatial location exist?. <i>Journal of Motor Behavior</i> , 1988 , 20, 399-415	1.4	94
234	A double dissociation between action and perception in the context of visual illusions: opposite effects of real and illusory size. <i>Psychological Science</i> , 2008 , 19, 221-5	7.9	92
233	Independent effects of pictorial displays on perception and action. Vision Research, 2000, 40, 1597-607	2.1	92
232	How (and why) the visual control of action differs from visual perception. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2014 , 281, 20140337	4.4	90
231	The role of visual feedback of hand position in the control of manual prehension. <i>Experimental Brain Research</i> , 1999 , 125, 281-6	2.3	90
230	Bringing the real world into the fMRI scanner: repetition effects for pictures versus real objects. <i>Scientific Reports</i> , 2011 , 1, 130	4.9	87
229	fMR-adaptation reveals separate processing regions for the perception of form and texture in the human ventral stream. <i>Experimental Brain Research</i> , 2009 , 192, 391-405	2.3	86
228	Action without perception in human vision. <i>Cognitive Neuropsychology</i> , 2008 , 25, 891-919	2.3	86
227	Independent processing of form, colour, and texture in object perception. <i>Perception</i> , 2008 , 37, 57-78	1.2	85
226	Comparison of memory- and visually guided saccades using event-related fMRI. <i>Journal of Neurophysiology</i> , 2004 , 91, 873-89	3.2	84
225	Scratching beneath the surface: new insights into the functional properties of the lateral occipital area and parahippocampal place area. <i>Journal of Neuroscience</i> , 2011 , 31, 8248-58	6.6	83
224	The removal of binocular cues disrupts the calibration of grasping in patients with visual form agnosia. <i>Experimental Brain Research</i> , 1997 , 116, 113-21	2.3	82
223	Reaching to ipsilateral or contralateral targets: within-hemisphere visuomotor processing cannot explain hemispatial differences in motor control. <i>Experimental Brain Research</i> , 1996 , 112, 496-504	2.3	82

222	Dissociating arbitrary stimulus-response mapping from movement planning during preparatory period: evidence from event-related functional magnetic resonance imaging. <i>Journal of Neuroscience</i> , 2006 , 26, 2704-13	6.6	81
221	Does a monocularly presented size-contrast illusion influence grip aperture?. <i>Neuropsychologia</i> , 1998 , 36, 491-7	3.2	79
220	Dissociation between two modes of spatial processing by a visual form agnosic. <i>NeuroReport</i> , 1995 , 6, 1893-6	1.7	77
219	Practice makes perfect, but only with the right hand: sensitivity to perceptual illusions with awkward grasps decreases with practice in the right but not the left hand. <i>Neuropsychologia</i> , 2008 , 46, 624-31	3.2	76
218	Oral asymmetries during verbal and non-verbal movements of the mouth. <i>Neuropsychologia</i> , 1987 , 25, 375-96	3.2	76
217	Left handedness does not extend to visually guided precision grasping. <i>Experimental Brain Research</i> , 2007 , 182, 275-9	2.3	75
216	The role of image size and retinal motion in the computation of absolute distance by the Mongolian gerbil (Meriones unguiculatus). <i>Vision Research</i> , 1990 , 30, 399-413	2.1	75
215	Hemispheric differences in motor control. <i>Behavioural Brain Research</i> , 1988 , 30, 203-14	3.4	75
214	Dissociation of perception and action unmasked by the hollow-face illusion. <i>Brain Research</i> , 2006 , 1080, 9-16	3.7	74
213	Preserved visual imagery in visual form agnosia. <i>Neuropsychologia</i> , 1995 , 33, 1383-94	3.2	74
212	When two eyes are better than one in prehension: monocular viewing and end-point variance. <i>Experimental Brain Research</i> , 2004 , 158, 317-27	2.3	73
211	Representation of object weight in human ventral visual cortex. <i>Current Biology</i> , 2014 , 24, 1866-73	6.3	72
210	Dual routes to action: contributions of the dorsal and ventral streams to adaptive behavior. <i>Progress in Brain Research</i> , 2005 , 149, 269-83	2.9	72
209	Visually guided reaching depends on motion area MT+. <i>Cerebral Cortex</i> , 2007 , 17, 2644-9	5.1	70
208	Manipulating and recognizing virtual objects: where the action is. <i>Canadian Journal of Experimental Psychology</i> , 2001 , 55, 111-20	0.8	70
207	Hand preference for precision grasping predicts language lateralization. <i>Neuropsychologia</i> , 2009 , 47, 3182-9	3.2	68
206	Behavioral and neuroimaging evidence for a contribution of color and texture information to scene classification in a patient with visual form agnosia. <i>Journal of Cognitive Neuroscience</i> , 2004 , 16, 955-65	3.1	68
205	Lifting without seeing: the role of vision in perceiving and acting upon the size weight illusion. <i>PLoS ONE</i> , 2010 , 5, e9709	3.7	67

(2007-2009)

204	Dissociable neural mechanisms for determining the perceived heaviness of objects and the predicted weight of objects during lifting: an fMRI investigation of the size-weight illusion. NeuroImage, 2009, 44, 200-12	7.9	66	
203	Visual sampling after lesions of the superior colliculus in rats. <i>Journal of Comparative and Physiological Psychology</i> , 1979 , 93, 1015-23		66	
202	The effects of landmarks on the performance of delayed and real-time pointing movements. <i>Experimental Brain Research</i> , 2005 , 167, 335-44	2.3	63	
201	Obstacle avoidance during locomotion is unaffected in a patient with visual form agnosia. <i>NeuroReport</i> , 1996 , 8, 165-8	1.7	63	
200	The McCollough effect reveals orientation discrimination in a case of cortical blindness. <i>Current Biology</i> , 1995 , 5, 545-51	6.3	62	
199	Understanding the contribution of binocular vision to the control of adaptive locomotion. <i>Experimental Brain Research</i> , 2002 , 142, 551-61	2.3	57	
198	A neurological dissociation between shape from shading and shape from edges. <i>Behavioural Brain Research</i> , 1996 , 76, 117-25	3.4	57	
197	Category-specific neural processing for naming pictures of animals and naming pictures of tools: an ALE meta-analysis. <i>Neuropsychologia</i> , 2010 , 48, 409-18	3.2	56	
196	Interactions between the processing of gaze direction and facial expression. <i>Vision Research</i> , 2005 , 45, 1191-200	2.1	56	
195	Peripheral vision for perception and action. <i>Experimental Brain Research</i> , 2005 , 165, 97-106	2.3	56	
194	fMRI reveals a lower visual field preference for hand actions in human superior parieto-occipital cortex (SPOC) and precuneus. <i>Cortex</i> , 2013 , 49, 2525-41	3.8	55	
193	Why color synesthesia involves more than color. <i>Trends in Cognitive Sciences</i> , 2009 , 13, 288-92	14	54	
192	Probing unconscious visual processing with the McCollough effect. <i>Consciousness and Cognition</i> , 1998 , 7, 494-519	2.6	53	
191	Pointing to places and spaces in a patient with visual form agnosia. <i>Neuropsychologia</i> , 2006 , 44, 1584-94	3.2	53	
190	A temporal analysis of grasping in the Ebbinghaus illusion: planning versus online control. <i>Experimental Brain Research</i> , 2002 , 144, 275-80	2.3	53	
189	Echolocation in humans: an overview. Wiley Interdisciplinary Reviews: Cognitive Science, 2016 , 7, 382-393	4.5	52	
188	Converging evidence for diverging pathways: neuropsychology and psychophysics tell the same story. <i>Vision Research</i> , 2011 , 51, 804-11	2.1	52	
187	Orientation sensitivity to graspable objects: an fMRI adaptation study. <i>NeuroImage</i> , 2007 , 36 Suppl 2, T87-93	7.9	52	

186	Grasping two-dimensional images and three-dimensional objects in visual-form agnosia. <i>Experimental Brain Research</i> , 2002 , 144, 262-7	2.3	52
185	Grasping future events: explicit knowledge of the availability of visual feedback fails to reliably influence prehension. <i>Experimental Brain Research</i> , 2008 , 188, 603-11	2.3	51
184	Selective, non-lateralized impairment of motor imagery following right parietal damage. <i>Neurocase</i> , 2002 , 8, 194-204	0.8	51
183	Orientation Discrimination in a Visual Form Agnosic: Evidence from the McCollough Effect. <i>Psychological Science</i> , 1991 , 2, 331-335	7.9	51
182	Target selection for reaching and saccades share a similar behavioral reference frame in the macaque. <i>Journal of Neurophysiology</i> , 2003 , 89, 1456-66	3.2	50
181	A haptic size-contrast illusion affects size perception but not grasping. <i>Experimental Brain Research</i> , 2003 , 153, 253-9	2.3	50
180	Getting a grip on reality: Grasping movements directed to real objects and images rely on dissociable neural representations. <i>Cortex</i> , 2018 , 98, 34-48	3.8	49
179	Visuomotor control: where does vision end and action begin?. Current Biology, 1998, 8, R489-91	6.3	49
178	Missing in action: the effect of obstacle position and size on avoidance while reaching. <i>Experimental Brain Research</i> , 2008 , 191, 83-97	2.3	48
177	An investigation of auditory contagious yawning. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2009 , 9, 335-42	3.5	46
176	One to four, and nothing more: nonconscious parallel individuation of objects during action planning. <i>Psychological Science</i> , 2011 , 22, 803-11	7.9	46
175	The relationship between fMRI adaptation and repetition priming. <i>NeuroImage</i> , 2006 , 32, 1432-40	7.9	46
174	Enhanced auditory spatial localization in blind echolocators. <i>Neuropsychologia</i> , 2015 , 67, 35-40	3.2	45
173	Shape-specific activation of occipital cortex in an early blind echolocation expert. <i>Neuropsychologia</i> , 2013 , 51, 938-49	3.2	43
172	Abnormal face identity coding in the middle fusiform gyrus of two brain-damaged prosopagnosic patients. <i>Neuropsychologia</i> , 2009 , 47, 2584-92	3.2	43
171	No evidence for visuomotor priming in a visually guided action task. <i>Neuropsychologia</i> , 2005 , 43, 216-20	6 3.2	43
170	Repetition suppression in occipital-temporal visual areas is modulated by physical rather than semantic features of objects. <i>NeuroImage</i> , 2008 , 41, 130-44	7.9	42
169	Grasping versus pointing and the differential use of visual feedback. <i>Human Movement Science</i> , 1993 , 12, 219-234	2.4	42

168	The role of head movements in the discrimination of 2-D shape by blind echolocation experts. <i>Attention, Perception, and Psychophysics</i> , 2014 , 76, 1828-37	2	41	
167	Effector-specific fields for motor preparation in the human frontal cortex. <i>NeuroImage</i> , 2007 , 34, 1209-	19. 9	40	
166	Left-sided oral asymmetries in spontaneous but not posed smiles. <i>Neuropsychologia</i> , 1988 , 26, 823-32	3.2	40	
165	Dual-task interference is greater in delayed grasping than in visually guided grasping. <i>Journal of Vision</i> , 2007 , 7, 5.1-12	0.4	39	
164	Enhanced detection of visual targets on the hand and familiar tools. <i>Neuropsychologia</i> , 2009 , 47, 2454-6	533.2	38	
163	Visual motion due to eye movements helps guide the hand. <i>Experimental Brain Research</i> , 2005 , 162, 394	1- <u>4.</u> 690	38	
162	Transient visual pathway critical for normal development of primate grasping behavior. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 1364-1369	11.5	37	
161	DFB visual brain in action: the role of tactile cues. <i>Neuropsychologia</i> , 2014 , 55, 41-50	3.2	37	
160	Updating the programming of a precision grip is a function of recent history of available feedback. <i>Experimental Brain Research</i> , 2009 , 194, 619-29	2.3	37	
159	The influence of competing perceptual and motor priors in the context of the size-weight illusion. <i>Experimental Brain Research</i> , 2010 , 205, 283-8	2.3	37	
158	Crinkling and crumpling: an auditory fMRI study of material properties. <i>NeuroImage</i> , 2008 , 43, 368-78	7.9	37	
157	Integration of haptic and visual size cues in perception and action revealed through cross-modal conflict. <i>Experimental Brain Research</i> , 2010 , 201, 863-73	2.3	36	
156	A hand in blindsight: hand placement near target improves size perception in the blind visual field. <i>Neuropsychologia</i> , 2008 , 46, 786-802	3.2	36	
155	The two-visual-systems hypothesis and the perspectival features of visual experience. <i>Consciousness and Cognition</i> , 2015 , 35, 225-33	2.6	35	
154	Grasping the non-conscious: preserved grip scaling to unseen objects for immediate but not delayed grasping following a unilateral lesion to primary visual cortex. <i>Vision Research</i> , 2011 , 51, 908-24	1 ^{2.1}	35	
153	The role of apparent size in building- and object-specific regions of ventral visual cortex. <i>Brain Research</i> , 2011 , 1388, 109-22	3.7	35	
152	"Real-time" obstacle avoidance in the absence of primary visual cortex. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 15996-6001	11.5	35	
151	Repetition priming and the time course of object recognition: an fMRI study. <i>NeuroReport</i> , 1999 , 10, 10	1 9.7 23	35	

150	Decoding visual object categories in early somatosensory cortex. <i>Cerebral Cortex</i> , 2015 , 25, 1020-31	5.1	34
149	Neural correlates of motion processing through echolocation, source hearing, and vision in blind echolocation experts and sighted echolocation novices. <i>Journal of Neurophysiology</i> , 2014 , 111, 112-27	3.2	34
148	The material-weight illusion induced by expectations alone. <i>Attention, Perception, and Psychophysics</i> , 2011 , 73, 36-41	2	34
147	Motor force field learning influences visual processing of target motion. <i>Journal of Neuroscience</i> , 2007 , 27, 9975-83	6.6	34
146	The Two Visual Systems Hypothesis: New Challenges and Insights from Visual form Agnosic Patient DF. <i>Frontiers in Neurology</i> , 2014 , 5, 255	4.1	33
145	Contribution of visual and proprioceptive information to the precision of reaching movements. <i>Experimental Brain Research</i> , 2010 , 202, 15-32	2.3	33
144	Now you see it, now you don [®] : How delaying an action system can transform a theory. <i>Behavioral and Brain Sciences</i> , 1992 , 15, 335-336	0.9	33
143	The effects of instructions to subjects on the programming of visually directed reaching movements. <i>Journal of Motor Behavior</i> , 1989 , 21, 5-19	1.4	33
142	Two visual pathways - Where have they taken us and where will they lead in future?. <i>Cortex</i> , 2018 , 98, 283-292	3.8	32
141	The intermanual transfer of anticipatory force control in precision grip lifting is not influenced by		
, i	the perception of weight. Experimental Brain Research, 2008, 185, 319-29	2.3	32
140	the perception of weight. Experimental Brain Research, 2008, 185, 319-29 Sight Unseen 2013,	2.3	32
		2.3	
140	Sight Unseen 2013, Does grasping in patient D.F. depend on vision?. <i>Trends in Cognitive Sciences</i> , 2012, 16, 256-7;		32
140 139	Sight Unseen 2013, Does grasping in patient D.F. depend on vision?. <i>Trends in Cognitive Sciences</i> , 2012, 16, 256-7; discussion 258-9 Size matters: a single representation underlies our perceptions of heaviness in the size-weight	14	32
140 139 138	Sight Unseen 2013, Does grasping in patient D.F. depend on vision?. <i>Trends in Cognitive Sciences</i> , 2012, 16, 256-7; discussion 258-9 Size matters: a single representation underlies our perceptions of heaviness in the size-weight illusion. <i>PLoS ONE</i> , 2013, 8, e54709 Neural substrates of visual spatial coding and visual feedback control for hand movements in	14 3·7	32 31 30
140 139 138	Sight Unseen 2013, Does grasping in patient D.F. depend on vision?. <i>Trends in Cognitive Sciences</i> , 2012, 16, 256-7; discussion 258-9 Size matters: a single representation underlies our perceptions of heaviness in the size-weight illusion. <i>PLoS ONE</i> , 2013, 8, e54709 Neural substrates of visual spatial coding and visual feedback control for hand movements in allocentric and target-directed tasks. <i>Frontiers in Human Neuroscience</i> , 2011, 5, 92 The lateral-occipital and the inferior-frontal cortex play different roles during the naming of	3.7 3.3	32 31 30 30
140 139 138 137	Sight Unseen 2013, Does grasping in patient D.F. depend on vision?. <i>Trends in Cognitive Sciences</i> , 2012, 16, 256-7; discussion 258-9 Size matters: a single representation underlies our perceptions of heaviness in the size-weight illusion. <i>PLoS ONE</i> , 2013, 8, e54709 Neural substrates of visual spatial coding and visual feedback control for hand movements in allocentric and target-directed tasks. <i>Frontiers in Human Neuroscience</i> , 2011, 5, 92 The lateral-occipital and the inferior-frontal cortex play different roles during the naming of visually presented objects. <i>Human Brain Mapping</i> , 2009, 30, 3851-64 Observing object lifting errors modulates cortico-spinal excitability and improves object lifting	3.7 3.3 5.9	32 31 30 30

(2015-2015)

132	Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps. <i>Frontiers in Human Neuroscience</i> , 2015 , 9, 216	3.3	28	
131	Separate visual systems for perception and action: a framework for understanding cortical visual impairment. <i>Developmental Medicine and Child Neurology</i> , 2013 , 55 Suppl 4, 9-12	3.3	28	
130	Programs for action in superior parietal cortex: a triple-pulse TMS investigation. <i>Neuropsychologia</i> , 2011 , 49, 2391-9	3.2	28	
129	Overlapping neural circuits for visual attention and eye movements in the human cerebellum. <i>Neuropsychologia</i> , 2015 , 69, 9-21	3.2	27	
128	Visual salience dominates early visuomotor competition in reaching behavior. <i>Journal of Vision</i> , 2011 , 11,	0.4	27	
127	Measuring unconscious actions in action-blindsight: exploring the kinematics of pointing movements to targets in the blind field of two patients with cortical hemianopia. <i>Neuropsychologia</i> , 2003 , 41, 1068-81	3.2	27	
126	Selective, Non-lateralized Impairment of Motor Imagery Following Right Parietal Damage. <i>Neurocase</i> , 2002 , 8, 194-204	0.8	27	
125	The role of vision in detecting and correcting fingertip force errors during object lifting. <i>Journal of Vision</i> , 2011 , 11, 4	0.4	26	
124	Short-term motor plasticity revealed in a visuomotor decision-making task. <i>Behavioural Brain Research</i> , 2010 , 214, 130-4	3.4	26	
123	Plans for action. <i>Behavioral and Brain Sciences</i> , 2004 , 27,	0.9	26	
122	A conscious route to unconscious vision. <i>Current Biology</i> , 2000 , 10, R64-7	6.3	26	
121	Transient visual responses reset the phase of low-frequency oscillations in the skeletomotor periphery. <i>European Journal of Neuroscience</i> , 2015 , 42, 1919-32	3.5	25	
12 0	FMRI adaptation during performance of learned arbitrary visuomotor conditional associations. <i>NeuroImage</i> , 2009 , 48, 696-706	7.9	25	
119	Effects of material properties and object orientation on precision grip kinematics. <i>Experimental Brain Research</i> , 2016 , 234, 2253-65	2.3	24	
118	Integration of visual and auditory information for hand actions: preliminary evidence for the contribution of natural sounds to grasping. <i>Experimental Brain Research</i> , 2011 , 209, 365-74	2.3	24	
117	Naming and grasping common objects: a priming study. Experimental Brain Research, 2004, 159, 55-64	2.3	24	
116	Are visual texture-selective areas recruited during haptic texture discrimination?. <i>NeuroImage</i> , 2014 , 94, 129-137	7.9	23	
115	The size-weight illusion induced through human echolocation. <i>Psychological Science</i> , 2015 , 26, 237-42	7.9	22	

114	Vision in the palm of your hand. <i>Neuropsychologia</i> , 2009 , 47, 1621-6	3.2	22
113	Distorting visual space with sound. <i>Vision Research</i> , 2006 , 46, 1553-8	2.1	22
112	Differences in the effects of crowding on size perception and grip scaling in densely cluttered 3-D scenes. <i>Psychological Science</i> , 2015 , 26, 58-69	7.9	21
111	Rapid decrement in the effects of the Ponzo display dissociates action and perception. <i>Psychonomic Bulletin and Review</i> , 2016 , 23, 1157-63	4.1	21
110	Afterimage size is modulated by size-contrast illusions. <i>Journal of Vision</i> , 2012 , 12,	0.4	21
109	Bimanual interference in rapid discrete movements is task specific and occurs at multiple levels of processing. <i>Journal of Neurophysiology</i> , 2005 , 94, 1861-8	3.2	21
108	Seeing all the obstacles in your way: the effect of visual feedback and visual feedback schedule on obstacle avoidance while reaching. <i>Experimental Brain Research</i> , 2010 , 202, 363-75	2.3	20
107	Perception of the Mccollough Effect Correlates with Activity in Extrastriate Cortex: A Functional Magnetic Resonance Imaging Study. <i>Psychological Science</i> , 1999 , 10, 444-448	7.9	20
106	More than blindsight: Case report of a child with extraordinary visual capacity following perinatal bilateral occipital lobe injury. <i>Neuropsychologia</i> , 2019 , 128, 178-186	3.2	20
105	The dorsal "action" pathway. <i>Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn</i> , 2018 , 151, 449-466	3	19
104	Perceived size change induced by nonvisual signals in darkness: the relative contribution of vergence and proprioception. <i>Journal of Neuroscience</i> , 2013 , 33, 16915-23	6.6	19
103	Beyond distance and direction: the brain represents target locations non-metrically. <i>Journal of Vision</i> , 2010 , 10, 3.1-27	0.4	19
102	Patient DFB visual brain in action: Visual feedforward control in visual form agnosia. <i>Vision Research</i> , 2015 , 110, 265-76	2.1	18
101	Handedness, laterality and the size-weight illusion. <i>Cortex</i> , 2012 , 48, 1342-50	3.8	18
100	Vision for perception and vision for action in the primate brain. <i>Novartis Foundation Symposium</i> , 1998 , 218, 21-34; discussion 34-9		18
99	The influence of visual feedback from the recent past on the programming of grip aperture is grasp-specific, shared between hands, and mediated by sensorimotor memory not task set. <i>Cognition</i> , 2015 , 138, 49-63	3.5	17
98	Explicit knowledge about the availability of visual feedback affects grasping with the left but not the right hand. <i>Experimental Brain Research</i> , 2014 , 232, 293-302	2.3	17
97	Voice recognition and the posterior cingulate: an fMRI study of prosopagnosia. <i>Journal of Neuropsychology</i> , 2008 , 2, 269-86	2.6	17

(2011-2000)

96	The effect of learned perceptual associations on visuomotor programming varies with kinematic demands. <i>Journal of Cognitive Neuroscience</i> , 2000 , 12, 950-64	3.1	17	
95	Preserved Haptic Shape Processing after Bilateral LOC Lesions. <i>Journal of Neuroscience</i> , 2015 , 35, 1374	5 <i>6</i> 60	16	
94	Variability-based Garner interference for perceptual estimations but not for grasping. <i>Experimental Brain Research</i> , 2014 , 232, 1751-8	2.3	16	
93	Counting on the motor system: rapid action planning reveals the format- and magnitude-dependent extraction of numerical quantity. <i>Journal of Vision</i> , 2014 , 14, 30	0.4	16	
92	Connecting the dots: object connectedness deceives perception but not movement planning. <i>Psychological Science</i> , 2013 , 24, 1456-65	7.9	16	
91	Obstacle avoidance during online corrections. <i>Journal of Vision</i> , 2010 , 10, 17	0.4	16	
90	Differential effects of advance semantic cues on grasping, naming, and manual estimation. <i>Experimental Brain Research</i> , 2006 , 175, 139-52	2.3	16	
89	A model of the coupling between grip aperture and hand transport during human prehension. <i>Experimental Brain Research</i> , 2005 , 167, 301-4	2.3	16	
88	Different spaces and different times for perception and action. <i>Progress in Brain Research</i> , 2001 , 134, 313-31	2.9	16	
87	Time flies when we intend to act: temporal distortion in a go/no-go task. <i>Journal of Neuroscience</i> , 2015 , 35, 5023-9	6.6	15	
86	Parahippocampal cortex is involved in material processing via echoes in blind echolocation experts. <i>Vision Research</i> , 2015 , 109, 139-48	2.1	15	
85	Weightlifting exercise and the size-weight illusion. <i>Attention, Perception, and Psychophysics</i> , 2014 , 76, 452-9	2	15	
84	Grasping without vision: time normalizing grip aperture profiles yields spurious grip scaling to target size. <i>Neuropsychologia</i> , 2013 , 51, 1878-87	3.2	15	
83	Real and illusory issues in the illusion debate (Why two things are sometimes better than one): Commentary on Kopiske etlal. (2016). <i>Cortex</i> , 2017 , 88, 205-209	3.8	15	
82	Sensitivity to biomechanical limitations during postural decision-making depends on the integrity of posterior superior parietal cortex. <i>Cortex</i> , 2017 , 97, 202-220	3.8	15	
81	Two visual streams: Interconnections do not imply duplication of function. <i>Cognitive Neuroscience</i> , 2010 , 1, 65-8	1.7	15	
80	Differential effects of delay upon visually and haptically guided grasping and perceptual judgments. <i>Experimental Brain Research</i> , 2009 , 195, 473-9	2.3	15	
79	Face inversion reduces the persistence of global form and its neural correlates. <i>PLoS ONE</i> , 2011 , 6, e187	79 <i>5</i> 7	15	

78	The Sander parallelogram illusion dissociates action and perception despite control for the litany of past confounds. <i>Cortex</i> , 2018 , 98, 163-176	3.8	14
77	A blind human expert echolocator shows size constancy for objects perceived by echoes. <i>Neurocase</i> , 2015 , 21, 465-70	0.8	14
76	Action rules: why the visual control of reaching and grasping is not always influenced by perceptual illusions. <i>Perception</i> , 2008 , 37, 355-66	1.2	13
75	Changing the Real Viewing Distance Reveals the Temporal Evolution of Size Constancy in Visual Cortex. <i>Current Biology</i> , 2019 , 29, 2237-2243.e4	6.3	12
74	Gender-selective neural populations: evidence from event-related fMRI repetition suppression. <i>Experimental Brain Research</i> , 2013 , 226, 241-52	2.3	12
73	A brief review of the role of training in near-tool effects. <i>Frontiers in Psychology</i> , 2013 , 4, 576	3.4	12
72	Impaired delayed but preserved immediate grasping in a neglect patient with parieto-occipital lesions. <i>Neuropsychologia</i> , 2011 , 49, 2498-504	3.2	12
71	Retinotopic organization of the visual cortex before and after decompression of the optic chiasm in a patient with pituitary macroadenoma. <i>Journal of Neurosurgery</i> , 2012 , 117, 218-24	3.2	12
70	Oral contraceptive use affects manual praxis but not simple visually guided movements. <i>Developmental Neuropsychology</i> , 1998 , 14, 399-420	1.8	12
69	Equal-magnitude size-weight illusions experienced within and between object categories. <i>Journal of Vision</i> , 2016 , 16, 25	0.4	12
68	FMRI-adaptation to highly-rendered color photographs of animals and manipulable artifacts during a classification task. <i>NeuroImage</i> , 2012 , 59, 2941-51	7.9	11
67	Reaction times for allocentric movements are 35Ims slower than reaction times for target-directed movements. <i>Experimental Brain Research</i> , 2011 , 211, 313-28	2.3	11
66	Can intention override the "automatic pilot"?. Experimental Brain Research, 2010, 202, 623-32	2.3	11
65	Blindsight in rodents: the use of a high-levelPdistance cue in gerbils with lesions of primary visual cortex. <i>Behavioural Brain Research</i> , 1990 , 38, 283-9	3.4	11
64	Interactions between the dorsal and ventral streams of visual processing. <i>Advances in Neurology</i> , 2003 , 93, 249-67		11
63	Psychophysical and neuroimaging responses to moving stimuli in a patient with the Riddoch phenomenon due to bilateral visual cortex lesions. <i>Neuropsychologia</i> , 2019 , 128, 150-165	3.2	10
62	The role of online visual feedback for the control of target-directed and allocentric hand movements. <i>Journal of Neurophysiology</i> , 2011 , 105, 846-59	3.2	10
61	Learned perceptual associations influence visuomotor programming under limited conditions: kinematic consistency. <i>Experimental Brain Research</i> , 2002 , 147, 485-93	2.3	10

(2004-2016)

60	A selective impairment of perception of sound motion direction in peripheral space: A case study. <i>Neuropsychologia</i> , 2016 , 80, 79-89	3.2	9
59	Asymmetric interference between the perception of shape and the perception of surface properties. <i>Journal of Vision</i> , 2009 , 9, 13.1-20	0.4	9
58	Affective blindsight in the absence of input from face processing regions in occipital-temporal cortex. <i>Neuropsychologia</i> , 2019 , 128, 50-57	3.2	9
57	A cortical network that marks the moment when conscious representations are updated. <i>Neuropsychologia</i> , 2015 , 79, 113-22	3.2	8
56	The Age-Dependent Neural Substrates of Blindsight. <i>Trends in Neurosciences</i> , 2020 , 43, 242-252	13.3	8
55	The effects of smiling on perceived age defy belief. <i>Psychonomic Bulletin and Review</i> , 2018 , 25, 612-616	4.1	8
54	Selection of wrist posture in conditions of motor ambiguity. Experimental Brain Research, 2011, 208, 60	7-229	8
53	Action insight: the role of the dorsal stream in the perception of grasping. <i>Neuron</i> , 2005 , 47, 328-9	13.9	8
52	Interocular transfer in the pigeon after lesions of the dorsal supraoptic decussation. <i>Behavioural Brain Research</i> , 1985 , 16, 1-7	3.4	8
51	Temporal distortion in the perception of actions and events. <i>Cognition</i> , 2017 , 158, 1-9	3.5	7
50	Greater magnocellular saccadic suppression in high versus low autistic tendency suggests a causal path to local perceptual style. <i>Royal Society Open Science</i> , 2015 , 2, 150226	3.3	7
49	Are there right hemisphere contributions to visually-guided movement? Manipulating left hand reaction time advantages in dextrals. <i>Frontiers in Psychology</i> , 2015 , 6, 1203	3.4	7
48	Near, far, or in between?-Target edges and the transport component of prehension. <i>Journal of Motor Behavior</i> , 1998 , 30, 90-3	1.4	7
47	Still holding after all these years: An action-perception dissociation in patient DF. <i>Neuropsychologia</i> , 2019 , 128, 249-254	3.2	7
46	Duplex Vision: Separate Cortical Pathways for Conscious Perception and the Control of Action616-627		7
45	FittsPLaw is modulated by movement history. <i>Psychonomic Bulletin and Review</i> , 2018 , 25, 1833-1839	4.1	6
44	Sharpening vision by adapting to flicker. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 12556-12561	11.5	6
43	Spared somatomotor and cognitive functions in a patient with a large porencephalic cyst revealed by fMRI. <i>Neuropsychologia</i> , 2004 , 42, 405-18	3.2	6

42	Learned perceptual associations influence visuomotor programming under limited conditions: cues as surface patterns. <i>Experimental Brain Research</i> , 2002 , 147, 473-84	2.3	6
41	Cortical visual systems for perception and action* 2010 , 71-94		6
40	Grip Constancy but Not Perceptual Size Constancy Survives Lesions of Early Visual Cortex. <i>Current Biology</i> , 2020 , 30, 3680-3686.e5	6.3	6
39	A TMS Investigation on the Role of Lateral Occipital Complex and Caudal Intraparietal Sulcus in the Perception of Object Form and Orientation. <i>Journal of Cognitive Neuroscience</i> , 2017 , 29, 881-895	3.1	5
38	Unusual hand postures but not familiar tools show motor equivalence with precision grasping. <i>Cognition</i> , 2016 , 151, 28-36	3.5	5
37	The effects of different aperture-viewing conditions on the recognition of novel objects. <i>Perception</i> , 2003 , 32, 1169-79	1.2	5
36	The Visual Pathways Mediating Perception and Prehension 1996 , 15-31		5
35	The material-weight illusion disappears or inverts in objects made of two materials. <i>Journal of Neurophysiology</i> , 2019 , 121, 996-1010	3.2	4
34	Saccade Latency Provides Evidence for Reduced Face Inversion Effects With Higher Autism Traits. <i>Frontiers in Human Neuroscience</i> , 2019 , 13, 470	3.3	4
33	The role of non-conscious visual processing in obstacle avoidance: A commentary on Ross etlal. (2016). <i>Cortex</i> , 2018 , 98, 269-275	3.8	4
32	When the predictive brain gets it really wrong. Behavioral and Brain Sciences, 2013, 36, 208-9	0.9	4
31	Functional reorganization in the adult brain. <i>Neuron</i> , 2007 , 54, 352-3	13.9	4
30	The Role of Haptic Expectations in Reaching to Grasp: From Pantomime to Natural Grasps and Back Again. <i>Frontiers in Psychology</i> , 2020 , 11, 588428	3.4	4
29	Temporal order judgments are disrupted more by reflexive than by voluntary saccades. <i>Journal of Neurophysiology</i> , 2014 , 111, 2103-8	3.2	3
28	Koniocellular projections and hand-assisted blindsight. <i>Neuropsychologia</i> , 2008 , 46, 3241-2	3.2	3
27	Coming to grips with vision and touch. <i>Behavioral and Brain Sciences</i> , 2007 , 30, 209-210	0.9	3
26	Visual search selectively enhances recognition of the search target. Visual Cognition, 2000, 7, 769-784	1.8	3
25	Real action in a virtual world. <i>Behavioral and Brain Sciences</i> , 2001 , 24, 984-985	0.9	3

(2009-2019)

24	A pantomiming priming study on the grasp and functional use actions of tools. <i>Experimental Brain Research</i> , 2019 , 237, 2155-2165	2.3	2
23	Acute alcohol consumption impairs controlled but not automatic processes in a psychophysical pointing paradigm. <i>PLoS ONE</i> , 2013 , 8, e68682	3.7	2
22	A visible difference. <i>Current Biology</i> , 2000 , 10, R46-7	6.3	2
21	Image and brain: the resolution of the imagery debate. <i>Journal of Cognitive Neuroscience</i> , 1995 , 7, 415-7	203.1	2
20	The role of animal faces in the animate-inanimate distinction in the ventral temporal cortex		2
19	The role of animal faces in the animate-inanimate distinction in the ventral temporal cortex <i>Neuropsychologia</i> , 2022 , 108192	3.2	2
18	Duplex Vision 2017 , 648-661		1
17	Separate Visual Systems for Action and Perception311-343		1
16	Perception and action planning: Getting it together. <i>Behavioral and Brain Sciences</i> , 2001 , 24, 907-908	0.9	1
15	Automatic Online Motor Control Is Intact in Parkinson® Disease With and Without Perceptual Awareness. <i>ENeuro</i> , 2017 , 4,	3.9	1
14	The effect of smiling on the perceived age of male and female faces across the lifespan. <i>Scientific Reports</i> , 2021 , 11, 23020	4.9	1
13	Temporal evolution from retinal image size to perceived size in human visual cortex		1
12	Computation of Absolute Distance in the Mongolian Gerbil (Meriones unguiculatus): Depth Algorithms and Neural Substrates. <i>Research Notes in Neural Computing</i> , 1991 , 205-219		1
11	Investigating the perceived timing of sensory events triggering actions in patients with Parkinsonß disease and the effects of dopaminergic therapy. <i>Cortex</i> , 2019 , 115, 309-323	3.8	1
10	When perception intrudes on 2D grasping: evidence from Garner interference. <i>Psychological Research</i> , 2020 , 84, 2138-2143	2.5	1
9	Lessons from human vision for robotic design. <i>Autonomous Intelligent Systems</i> , 2021 , 1, 1		O
8	Brain areas involved in echolocation motion processing in blind echolocation experts. <i>Seeing and Perceiving</i> , 2012 , 25, 140		
7	Preserved striate cortex is not sufficient to support the McCollough effect: evidence from two patients with cerebral achromatopsia. <i>Perception</i> , 2009 , 38, 1741-8	1.2	

Why Vision is More than Seeing. Canadian Journal of Philosophy Supplementary Volume, 2001, 27, 186-214

5	Touchpoints reveal sensitivity to object shape in an individual with visual agnosia and in another who is cortically blind. <i>Journal of Vision</i> , 2018 , 18, 435	0.4
4	An fMRI study identifying brain regions activated when performing well-learned versus newly learned visuomotor associations. <i>Journal of Vision</i> , 2019 , 19, 278	0.4
3	Transforming abstract plans into concrete actions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 29265-29267	11.5

- A priming study on naming real versus pictures of tools. *Experimental Brain Research*, **2021**, 239, 821-8342.3
- Coming to grips with a fundamental deficit in visual perception.. Cognitive Neuropsychology, 2022, 1-4 $^{\circ}$ 2.3