Isabel Cardoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8364907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deposition of Transthyretin in Early Stages of Familial Amyloidotic Polyneuropathy. American Journal of Pathology, 2001, 159, 1993-2000.	1.9	303
2	Tetramer Dissociation and Monomer Partial Unfolding Precedes Protofibril Formation in Amyloidogenic Transthyretin Variants. Journal of Biological Chemistry, 2001, 276, 27207-27213.	1.6	274
3	Synergy of combined Doxycycline/TUDCA treatment in lowering Transthyretin deposition and associated biomarkers: studies in FAP mouse models. Journal of Translational Medicine, 2010, 8, 74.	1.8	149
4	Doxycycline disrupts transthyretin amyloid: evidence from studies in a FAP transgenic mice model. FASEB Journal, 2006, 20, 234-239.	0.2	136
5	Transthyretin binding to Aâ€Beta peptide – Impact on Aâ€Beta fibrillogenesis and toxicity. FEBS Letters, 2008, 582, 936-942.	1.3	125
6	Binding of epigallocatechinâ€3â€gallate to transthyretin modulates its amyloidogenicity. FEBS Letters, 2009, 583, 3569-3576.	1.3	122
7	4 ′â€iodoâ€4′â€Đeoxydoxorubicin and tetracyclines disrupt transthyretin amyloid fibrils in vitro producing noncytotoxic species: screening for TTR fibril disrupters. FASEB Journal, 2003, 17, 803-809.	0.2	117
8	Transthyretin fibrillogenesis entails the assembly of monomers: a molecular model for in vitro assembled transthyretin amyloid-like fibrils 1 1Edited by M. Moody. Journal of Molecular Biology, 2002, 317, 683-695.	2.0	112
9	Transthyretin and Alzheimer's disease: Where in the brain?. Neurobiology of Aging, 2007, 28, 713-718.	1.5	97
10	Transthyretin Protects against A-Beta Peptide Toxicity by Proteolytic Cleavage of the Peptide: A Mechanism Sensitive to the Kunitz Protease Inhibitor. PLoS ONE, 2008, 3, e2899.	1.1	95
11	Selective binding to transthyretin and tetramer stabilization in serum from patients with familial amyloidotic polyneuropathy by an iodinated diflunisal derivative. Biochemical Journal, 2004, 381, 351-356.	1.7	88
12	Transthyretin participates in beta-amyloid transport from the brain to the liver- involvement of the low-density lipoprotein receptor-related protein 1?. Scientific Reports, 2016, 6, 20164.	1.6	71
13	Testing the Therapeutic Potential of Doxycycline in a Drosophila melanogaster Model of Alzheimer Disease. Journal of Biological Chemistry, 2011, 286, 41647-41655.	1.6	63
14	4′-Iodo-4′-Deoxydoxorubicin Disrupts the Fibrillar Structure of Transthyretin Amyloid. American Journal of Pathology, 2000, 156, 1919-1925.	1.9	55
15	Small Transthyretin (TTR) Ligands as Possible Therapeutic Agents in TTR Amyloidoses. CNS and Neurological Disorders, 2005, 4, 587-596.	4.3	54
16	Activation of ERK1/2 MAP kinases in Familial Amyloidotic Polyneuropathy. Journal of Neurochemistry, 2006, 97, 151-161.	2.1	52
17	Calcium Ions Promote Superoxide Dismutase 1 (SOD1) Aggregation into Non-fibrillar Amyloid. Journal of Biological Chemistry, 2013, 288, 25219-25228.	1.6	52
18	Dual ligand immunoliposomes for drug delivery to the brain. Colloids and Surfaces B: Biointerfaces, 2015, 134, 213-219	2.5	52

ISABEL CARDOSO

#	Article	IF	CITATIONS
19	The neuronal S100B protein is a calcium-tuned suppressor of amyloid-Î ² aggregation. Science Advances, 2018, 4, eaaq1702.	4.7	49
20	Transthyretin Decrease in Plasma of MCI and AD Patients: Investigation of Mechanisms for Disease Modulation. Current Alzheimer Research, 2012, 9, 881-889.	0.7	48
21	Transthyretin neuroprotection in Alzheimer's disease is dependent on proteolysis. Neurobiology of Aging, 2017, 59, 10-14.	1.5	46
22	Design and biological activity of β-sheet breaker peptide conjugates. Biochemical and Biophysical Research Communications, 2009, 380, 397-401.	1.0	45
23	Transthyretin Stabilization by Iododiflunisal Promotes Amyloid-β Peptide Clearance, Decreases its Deposition, and Ameliorates Cognitive Deficits in an Alzheimer's Disease Mouse Model. Journal of Alzheimer's Disease, 2014, 39, 357-370.	1.2	45
24	Controlling Amyloid‥2 Peptide(1–42) Oligomerization and Toxicity by Fluorinated Nanoparticles. ChemBioChem, 2010, 11, 1905-1913.	1.3	42
25	Undiscovered Roles for Transthyretin: From a Transporter Protein to a New Therapeutic Target for Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 2075.	1.8	42
26	Gender-Dependent Transthyretin Modulation of Brain Amyloid-β Levels: Evidence from a Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 27, 429-439.	1.2	40
27	Stability of the Transthyretin Molecule as a Key Factor in the Interaction with A-Beta Peptide - Relevance in Alzheimer's Disease. PLoS ONE, 2012, 7, e45368.	1.1	39
28	Transthyretin stability is critical in assisting beta amyloid clearance– Relevance of transthyretin stabilization in Alzheimer's disease. CNS Neuroscience and Therapeutics, 2017, 23, 605-619.	1.9	38
29	Resveratrol Administration Increases Transthyretin Protein Levels, Ameliorating AD Features: The Importance of Transthyretin Tetrameric Stability. Molecular Medicine, 2016, 22, 597-607.	1.9	37
30	S100A6 Amyloid Fibril Formation Is Calcium-modulated and Enhances Superoxide Dismutase-1 (SOD1) Aggregation. Journal of Biological Chemistry, 2012, 287, 42233-42242.	1.6	36
31	Randomization of Amyloidâ€Î²â€Peptide(1â€42) Conformation by Sulfonated and Sulfated Nanoparticles Reduces Aggregation and Cytotoxicity. Macromolecular Bioscience, 2010, 10, 1152-1163.	2.1	35
32	Comparative <i>in vitro</i> and <i>ex vivo</i> activities of selected inhibitors of transthyretin aggregation: relevance in drug design. Biochemical Journal, 2007, 408, 131-138.	1.7	30
33	Aberrant zinc binding to immature conformers of metal-free copper–zinc superoxide dismutase triggers amorphous aggregation. Metallomics, 2015, 7, 333-346.	1.0	29
34	Polymer-doxycycline conjugates as fibril disrupters: An approach towards the treatment of a rare amyloidotic disease. Journal of Controlled Release, 2015, 198, 80-90.	4.8	27
35	Human metallothioneins 2 and 3 differentially affect amyloidâ€beta binding by transthyretin. FEBS Journal, 2010, 277, 3427-3436.	2.2	25
36	In vitro inhibition of transthyretin aggregate-induced cytotoxicity by full and peptide derived forms of the soluble receptor for advanced glycation end products (RAGE). FEBS Letters, 2006, 580, 3451-3456.	1.3	24

ISABEL CARDOSO

#	Article	IF	CITATIONS
37	Insights on the Interaction between Transthyretin and AÎ ² in Solution. A Saturation Transfer Difference (STD) NMR Analysis of the Role of Iododiflunisal. Journal of Medicinal Chemistry, 2017, 60, 5749-5758.	2.9	24
38	Choroid Plexus in Alzheimer's Disease—The Current State of Knowledge. Biomedicines, 2022, 10, 224.	1.4	23
39	Intrinsically Disordered and Aggregation Prone Regions Underlie Î ² -Aggregation in S100 Proteins. PLoS ONE, 2013, 8, e76629.	1.1	22
40	Calorimetric Studies of Binary and Ternary Molecular Interactions between Transthyretin, Aβ Peptides, and Small-Molecule Chaperones toward an Alternative Strategy for Alzheimer's Disease Drug Discovery. Journal of Medicinal Chemistry, 2020, 63, 3205-3214.	2.9	22
41	Extracellular Matrix Markers for Disease Progression and Follow-Up of Therapies in Familial Amyloid Polyneuropathy V30M TTR-Related. Disease Markers, 2008, 25, 37-47.	0.6	21
42	Aprotinin binding to amyloid fibrils. FEBS Journal, 2000, 267, 2307-2311.	0.2	20
43	X-ray Absorption Spectroscopy Reveals a Substantial Increase of Sulfur Oxidation in Transthyretin (TTR) upon Fibrillization. Journal of Biological Chemistry, 2003, 278, 11654-11660.	1.6	18
44	Impairment of the ubiquitin–proteasome system associated with extracellular transthyretin aggregates in familial amyloidotic polyneuropathy. Journal of Pathology, 2007, 213, 200-209.	2.1	16
45	The effect of a fluorinated cholesterol derivative on the stability and physical properties of cationic DNA vectors. Soft Matter, 2013, 9, 401-409.	1.2	16
46	The S100B Alarmin Is a Dual-Function Chaperone Suppressing Amyloid-Î ² Oligomerization through Combined Zinc Chelation and Inhibition of Protein Aggregation. ACS Chemical Neuroscience, 2020, 11, 2753-2760.	1.7	16
47	Repurposing Benzbromarone for Familial Amyloid Polyneuropathy: A New Transthyretin Tetramer Stabilizer. International Journal of Molecular Sciences, 2020, 21, 7166.	1.8	15
48	Targeting transthyretin in Alzheimer's disease: Drug discovery of small-molecule chaperones as disease-modifying drug candidates for Alzheimer's disease. European Journal of Medicinal Chemistry, 2021, 226, 113847.	2.6	15
49	Familial Amyloidotic Polyneuropathy: Protein Aggregation in the Peripheral Nervous System. Journal of Molecular Neuroscience, 2004, 23, 035-040.	1.1	14
50	Radiochemical examination of transthyretin (TTR) brain penetration assisted by iododiflunisal, a TTR tetramer stabilizer and a new candidate drug for AD. Scientific Reports, 2019, 9, 13672.	1.6	13
51	Transthyretin: roles in the nervous system beyond thyroxine and retinol transport. Expert Review of Endocrinology and Metabolism, 2012, 7, 181-189.	1.2	11
52	Dynamic interactions and Ca2+-binding modulate the holdase-type chaperone activity of S100B preventing tau aggregation and seeding. Nature Communications, 2021, 12, 6292.	5.8	10
53	Targeting a rare amyloidotic disease through rationally designed polymer conjugates. Journal of Controlled Release, 2014, 178, 95-100.	4.8	9
54	Bridging Cyanobacteria to Neurodegenerative Diseases: A New Potential Source of Bioactive Compounds against Alzheimer's Disease. Marine Drugs, 2021, 19, 343.	2.2	8

ISABEL CARDOSO

#	Article	IF	CITATIONS
55	Neuroprotection in early stages of Alzheimer's disease is promoted by transthyretin angiogenic properties. Alzheimer's Research and Therapy, 2021, 13, 143.	3.0	7
56	Oral Treatment with Iododiflunisal Delays Hippocampal Amyloid-β Formation in a Transgenic Mouse Model of Alzheimer's Disease: A Longitudinal in vivo Molecular Imaging Study1. Journal of Alzheimer's Disease, 2020, 77, 99-112.	1.2	6
57	Cu ²⁺ -binding to S100B triggers polymerization of disulfide cross-linked tetramers with enhanced chaperone activity against amyloid-l ² aggregation. Chemical Communications, 2021, 57, 379-382.	2.2	6
58	Amyloidogenic properties of transthyretinâ€like protein (TLP) from <i>Escherichia coli</i> . FEBS Letters, 2008, 582, 2893-2898.	1.3	5
59	Small Molecules Present in the Cerebrospinal Fluid Metabolome Influence Superoxide Dismutase 1 Aggregation. International Journal of Molecular Sciences, 2013, 14, 19128-19145.	1.8	4
60	Structural Heterogeneity and Bioimaging of S100 Amyloid Assemblies. , 2014, , 197-212.		4
61	An Assay for Screening Potential Drug Candidates for Alzheimer's Disease That Act as Chaperones of the Transthyretin and Amyloidâ€Î² Peptides Interaction. Chemistry - A European Journal, 2020, 26, 17462-17469.	1.7	4
62	Collagen type IV in brain vessels of an AD mouse model: modulation by transthyretin?. Amyloid: the International Journal of Experimental and Clinical Investigation: the Official Journal of the International Society of Amyloidosis, 2019, 26, 138-139.	1.4	3
63	Exploring the Physiological Role of Transthyretin in Glucose Metabolism in the Liver. International Journal of Molecular Sciences, 2021, 22, 6073.	1.8	2
64	Modulating Role of TTR in AÎ 2 Toxicity, from Health to Disease. , 0, , .		1
65	Sulphur K-edge XANES Spectroscopy of Transthyretin Amyloid Fibres. Spectroscopy, 2002, 16, 281-283.	0.8	0
66	Transthyretin Aggregation and Toxicity. , 2012, , 407-432.		0

Transthyretin Aggregation and Toxicity. , 2012, , 407-432. 66

5