Valerie Bouquet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8364894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of the Microstructure of ZnO Thin Films Prepared by PLD on Their Performance as Toxic Gas Sensors. Chemosensors, 2022, 10, 285.	1.8	6
2	Enhanced tunability and temperature-dependent dielectric characteristics at microwaves of K0.5Na0.5NbO3 thin films epitaxially grown on (100)MgO substrates. Journal of Alloys and Compounds, 2021, 856, 158138.	2.8	10
3	Frequency-Tunable Slot-Loop Antenna Based on KNN Ferroelectric Interdigitated Varactors. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 1414-1418.	2.4	7
4	Photoluminescence in Alkaline Earth Stannate Thin Films Grown by Physical and Chemical Methods. Engineering Materials, 2021, , 155-183.	0.3	2
5	Orientation control of KNbO3 film grown on glass substrates by Ca2Nb3O10â^ nanosheets seed layer. Thin Solid Films, 2020, 693, 137682.	0.8	6
6	Influence of two-dimensional oxide nanosheets seed layers on the growth of (100)BiFeO3 thin films synthesized by chemical solution deposition. Thin Solid Films, 2020, 693, 137687.	0.8	6
7	Theoretical-experimental evaluation of the photocatalytic activity of KCa2Ta3â^xNbxO10. Materials Letters, 2019, 253, 392-395.	1.3	6
8	Controlling the Electronic, Structural, and Optical Properties of Novel MgTiO ₃ /LaNiO ₃ Nanostructured Films for Enhanced Optoelectronic Devices. ACS Applied Nano Materials, 2019, 2, 2612-2620.	2.4	11
9	Influence of deposition parameters on the structure and microstructure of Bi12TiO20 films obtained by pulsed laser deposition. Ceramics International, 2019, 45, 3510-3517.	2.3	8
10	A Twofold Approach in Loss Reduction of KTa _{0.5} Nb _{0.5} O ₃ Ferroelectric Layers for Low-Loss Tunable Devices at Microwaves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 665-671.	1.7	1
11	Non-volatile resistive switching in the Mott insulator (V1â^'xCrx)2O3. Physica B: Condensed Matter, 2018, 536, 327-330.	1.3	9
12	K x Na1â^'xNbO3 perovskite thin films grown by pulsed laser deposition on R-plane sapphire for tunable microwave devices. Journal of Materials Science, 2018, 53, 13042-13052.	1.7	8
13	Evolution of the structural and microstructural characteristics of SrSn1â^'xTixO3 thin films under the influence of the composition, the substrate and the deposition method. Surface and Coatings Technology, 2017, 313, 361-373.	2.2	9
14	Electrochemical behaviour of CuxMo6S8 thin films synthesized by CSD. Electrochimica Acta, 2017, 257, 436-443.	2.6	5
15	Effect of in-plane ordering on dielectric properties of highly {111}-oriented bismuth–zinc–niobate thin films. Journal of Materials Science, 2017, 52, 11306-11313.	1.7	9
16	Influence of the Structural Characteristics of Epitaxial TiO2 Thin Films on Their Photocatalytic Properties. Journal of Nanoscience and Nanotechnology, 2017, 17, 4326-4334.	0.9	3
17	Preparation of niobium based oxynitride nanosheets by exfoliation of Ruddlesden-Popper phase precursor. Solid State Sciences, 2016, 54, 17-21.	1.5	18
18	Metal–insulator transitions in (V1-xCrx)2O3 thin films deposited by reactive direct current magnetron co-sputtering. Thin Solid Films, 2016, 617, 56-62.	0.8	17

VALERIE BOUQUET

#	Article	IF	CITATIONS
19	SrSnO3:N – Nitridation and evaluation of photocatalytic activity. Journal of Alloys and Compounds, 2015, 649, 491-494.	2.8	16
20	Electric Pulse Induced Resistive Switching in the Narrow Gap Mott Insulator GaMo ₄ S ₈ . Key Engineering Materials, 2014, 617, 135-140.	0.4	10
21	Sr1â^'xBaxSnO3 system applied in the photocatalytic discoloration of an azo-dye. Solid State Sciences, 2014, 28, 67-73.	1.5	47
22	Nanorods of Potassium Tantalum Niobate Tetragonal Tungsten Bronze Phase Grown by Pulsed Laser Deposition. Chemistry of Materials, 2013, 25, 2793-2802.	3.2	13
23	Influence of the network modifier on the characteristics of MSnO3 (M=Sr and Ca) thin films synthesized by chemical solution deposition. Journal of Solid State Chemistry, 2013, 199, 34-41.	1.4	18
24	Lead-Free Oxide Thin Films for Gas Detection. Advanced Materials Research, 2013, 789, 105-111.	0.3	6
25	Zinc-gallium oxynitride powders: effect of the oxide precursor synthesis route. Ceramica, 2013, 59, 269-276.	0.3	8
26	Influence of Nd Doping on the Properties of SrTiO ₃ thin Films Synthesized by PLD on Different Substrates. Current Physical Chemistry, 2013, 3, 392-399.	0.1	1
27	Structural, Optical, and Dielectric Properties of Bi _{1.5–<i>x</i>} Zn _{0.92–<i>y</i>} Nb _{1.5} O _{6.92â^î´} Thin Film Grown by PLD on R-plane Sapphire and LaAlO ₃ Substrates. ACS Applied Materials & amp; Interfaces. 2012. 4. 5227-5233.	^{1S} 4.0	7
28	Synthesis of Cu2Mo6S8 powders and thin films from intermediate oxides prepared by polymeric precursor method. Solid State Sciences, 2012, 14, 719-724.	1.5	12
29	Ferroelectric and dielectric multilayer heterostructures based on KTa0.65Nb0.35O3 and Bi1.5-xZn0.92-yNb1.5O6.92–1.5x-y grown by pulsed laser deposition and chemical solution deposition for high frequency tunable devices. Thin Solid Films, 2012, 520, 4564-4567.	0.8	6
30	Mg diffusion in K(Ta0.65Nb0.35)O3 thin films grown on MgO evidenced by Auger electron spectroscopy investigation. Applied Surface Science, 2011, 257, 9485-9489.	3.1	4
31	A comparative study of ZnS powders sintering by Hot Uniaxial Pressing (HUP) and Spark Plasma Sintering (SPS). Optical Materials, 2011, 33, 706-712.	1.7	45
32	Enhancement of electrochemical transfer junction for cation extraction. Electrochemistry Communications, 2010, 12, 1734-1737.	2.3	6
33	Synthesis of SrSnO3 thin films by pulsed laser deposition: Influence of substrate and deposition temperature. Thin Solid Films, 2010, 519, 614-618.	0.8	12
34	Substrate-controlled allotropic phases and growth orientation of TiO ₂ epitaxial thin films. Journal of Applied Crystallography, 2010, 43, 1502-1512.	1.9	27
35	Synthesis of KTaxNb1â^'xO3 (KTN) powders and thin films by polymeric precursor method. Solid State Sciences, 2009, 11, 91-95.	1.5	13
36	Reduction of microwave dielectric losses in KTa1â^'xNbxO3 thin films by MgO-doping. Thin Solid Films, 2009, 517, 5940-5942.	0.8	14

VALERIE BOUQUET

#	Article	IF	CITATIONS
37	Control of composition and structure of ferroelectric oxide thin films grown by pulsed laser deposition. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3293-3297.	0.8	1
38	Influence of substrate on the pulsed laser deposition growth and microwave behaviour of KTa0.6Nb0.4O3 potassium tantalate niobate ferroelectric thin films. Thin Solid Films, 2008, 516, 4882-4888.	0.8	25
39	Structural Characteristics of KTa _{0.5} Nb _{0.5} O ₃ Ferroelectric Thin Films and Applications to Planar Transmission Lines. Ferroelectrics, 2008, 362, 137-144.	0.3	8
40	Epitaxially grown ferroelectric thin films for agile devices. Phase Transitions, 2008, 81, 643-665.	0.6	4
41	EFFECT OF THIN KNbO3 SEED LAYERS ON PULSED LASER DEPOSITED FERROELECTRIC KTa0.65Nb0.35O3 FILMS FOR MICROWAVE TUNABLE APPLICATION. Integrated Ferroelectrics, 2007, 93, 126-132.	0.3	8
42	Tunable DBR resonators using KTN ferroelectric thin-films. IEEE MTT-S International Microwave Symposium Digest IEEE MTT-S International Microwave Symposium, 2007, , .	0.0	3
43	KTa0.5Nb0.5O3 ferroelectric thin films: processing, characterization and application to microwave agile devices. Frequenz, 2007, 61, .	0.6	4
44	Reconfigurable circuits for wireless applications using KTN ferroelectrics. , 2007, , .		1
45	KTN Dielectric Properties at Microwave Frequencies: Substrate Influence. Ferroelectrics, 2007, 353, 21-28.	0.3	10
46	Numerical and comparative study of the agility of planar transmission lines printed on a ferroelectric thin film. Microwave and Optical Technology Letters, 2007, 49, 280-285.	0.9	3
47	Structural improvement of PLD grown KTa0.65Nb0.35O3 films by the use of KNbO3 seed layers. Applied Surface Science, 2007, 254, 1298-1302.	3.1	15
48	KTaO3 powders and thin films prepared by polymeric precursor method. Solid State Sciences, 2006, 8, 606-612.	1.5	12
49	KTN ferroelectric thin-films: Application to the realization of tunable microwave devices. , 2006, , .		2
50	Preparation of KNbO3 thin films onto alumina substrates by polymeric precursor method. Thin Solid Films, 2005, 493, 139-145.	0.8	15
51	Microstructure comparison between KNbO3 thin films grown by polymeric precursors and PLD methods. Solid State Sciences, 2005, 7, 1317-1323.	1.5	15
52	Ferroelectric Thin Films for Applications in High Frequency Range. Ferroelectrics, 2005, 316, 7-12.	0.3	17
53	Influence of Mg on the Structural and Optical Properties of LiNbO ₃ Thin Films Grown by Polymeric Precursor Method. Materials Science Forum, 2005, 498-499, 342-349.	0.3	0
54	Sinterização de filmes finos de LiNbO3 em forno microondas: estudo da influência da direção do fluxo de calor. Ceramica, 2004, 50, 128-133.	0.3	4

VALERIE BOUQUET

#	Article	IF	CITATIONS
55	SrBi2Nb2O9 thin films epitaxially grown on Pt epitaxial bottom layers: structural characteristics and nanoscale characterization of the ferroelectric behaviour by AFM. Annalen Der Physik, 2004, 13, 35-38.	0.9	4
56	Effect of Thickness on the Electrical and Optical Properties of Sb Doped SnO2 (ATO) Thin Films. Journal of Electroceramics, 2004, 13, 159-165.	0.8	55
57	Epitaxial growth of LiNbO3 thin films in a microwave oven. Thin Solid Films, 2003, 436, 213-219.	0.8	61
58	Ferroelectric Materials with Photoluminescent Properties. Ferroelectrics, 2003, 288, 315-326.	0.3	3
59	Epitaxial growth and ferroelectric properties of SrBi2Nb2O9(115) thin films grown by pulsed-laser deposition on epitaxial Pt(111) electrode. Applied Physics Letters, 2003, 83, 5500-5502.	1.5	12
60	Composition control of SBN thin films deposited by PLD on various substrates. Solid State Sciences, 2001, 3, 1133-1135.	0.8	16
61	Ferroelectric SBN thin films grown by an SBN/Bi2O3 PLD sequential process. Journal of the European Ceramic Society, 2001, 21, 2199-2205.	2.8	11
62	Multi-layered LiNbO3 films prepared by a polymeric precursor method. Journal of the European Ceramic Society, 2001, 21, 1521-1524.	2.8	11
63	Epitaxially grown LiNbO ₃ thin films by polymeric precursor method. Journal of Materials Research, 2000, 15, 2446-2453.	1.2	34
64	Influence of heat treatment on LiNbO ₃ thin films prepared on Si(111) by the polymeric precursor method. Journal of Materials Research, 1999, 14, 3115-3121.	1.2	33
65	Structural and surface morphology characterizations of oriented LiNbO3 thin films grown by polymeric precursor method. Journal of the European Ceramic Society, 1999, 19, 1447-1451.	2.8	16
66	Overall critical current density of Chevrel wires at high magnetic field. IEEE Transactions on Applied Superconductivity, 1997, 7, 1759-1762.	1.1	3
67	Enhancement of the critical current density in Chevrel phase superconducting wires. Journal of Applied Physics, 1997, 81, 6277-6284.	1.1	18
68	LiNbO ₃ Thin Films prepared from a Polymeric Precursor Method. Key Engineering Materials, 1997, 132-136, 1143-1146.	0.4	8
69	Overall critical current density of chevrel wires in magnetic fields up to 24 tesla. European Physical Journal D, 1996, 46, 2757-2758.	0.4	Ο
70	Promising critical current density in the Chevrel phase superconducting wires. Physica C: Superconductivity and Its Applications, 1996, 258, 21-29.	0.6	12
71	Dependence of critical current densities in Chevrel phase superconducting wires on magnetic fields up to 25 T. Physica B: Condensed Matter, 1995, 211, 272-274.	1.3	3
72	Jc investigations in Chevrel phase wires. Physica C: Superconductivity and Its Applications, 1994, 235-240, 769-770.	0.6	1

#	Article	IF	CITATIONS
73	Effect of sintering time and temperature on superconducting properties of Chevrel phase wires made with micron-sized powder. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2543-2544.	0.6	5