Ana Carolina CorrÃaa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8364779/publications.pdf

Version: 2024-02-01

759233 839539 19 1,223 12 18 citations h-index g-index papers 19 19 19 1715 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose, 2010, 17, 595-606.	4.9	322
2	Sugarcane bagasse whiskers: Extraction and characterizations. Industrial Crops and Products, 2011, 33, 63-66.	5.2	250
3	Cellulose nanofibers from curaua fibers. Cellulose, 2010, 17, 1183-1192.	4.9	210
4	Properties of a Biodegradable Ternary Blend of Thermoplastic Starch (TPS), Poly($\hat{l}\mu$ -Caprolactone) (PCL) and Poly(Lactic Acid) (PLA). Journal of Polymers and the Environment, 2015, 23, 83-89.	5.0	82
5	Obtaining nanocomposites of polyamide 6 and cellulose whiskers via extrusion and injection molding. Cellulose, 2014, 21, 311-322.	4.9	73
6	Extraction and characterization of cellulose whiskers from commercial cotton fibers. Journal of Materials Science, 2011, 46, 7858-7864.	3.7	69
7	Biodegradable blends of urea plasticized thermoplastic starch (UTPS) and poly(Îμ-caprolactone) (PCL): Morphological, rheological, thermal and mechanical properties. Carbohydrate Polymers, 2017, 167, 177-184.	10.2	57
8	Bionanocomposites produced from cassava starch and oil palm mesocarp cellulose nanowhiskers. Carbohydrate Polymers, 2017, 175, 330-336.	10.2	33
9	Urea Formaldehyde and Cellulose Nanocrystals Adhesive: Studies Applied to Sugarcane Bagasse Particleboards. Journal of Polymers and the Environment, 2018, 26, 3040-3050.	5.0	21
10	Cellulose Nanocrystals from Fibers of Macauba (Acrocomia Aculeata) and Gravata (Bromelia) Tj ETQq0 0 0 rgBT /	Overlock 1 4.5	.0 Tf 50 382 ⁻
11	Biocomposites of PLA and Mango Seed Waste: Potential Material for Food Packaging and a Technological Alternative to Reduce Environmental Impact. Starch/Staerke, 2021, 73, 2000118.	2.1	18
12	Production of Cellulose Nanowhiskers from Oil Palm Mesocarp Fibers by Acid Hydrolysis and Microfluidization. Journal of Nanoscience and Nanotechnology, 2017, 17, 4970-4976.	0.9	16
13	Cellulose nanocrystals from curaua fibers and poly[ethyleneâ€ <scp><i>co</i></scp> â€(vinyl acetate)] nanocomposites: Effect of drying process of CNCs on thermal and mechanical properties. Polymer Composites, 2020, 41, 1736-1748.	4.6	14
14	Synthetic Paper from Plastic Waste: The Effect of CaCO3 on Physical, Surface Properties and Printability. Macromolecular Symposia, 2006, 245-246, 611-620.	0.7	12
15	Biodegradable <scp>PLA</scp> based nanocomposites for packaging applications: The effects of organoâ€modified bentonite concentration. Journal of Applied Polymer Science, 2021, 138, 50907.	2.6	8
16	Biodegradability and nutrients release of thermoplastic starch and poly ($\hat{l}\mu$ -caprolactone) blends for agricultural uses. Carbohydrate Polymers, 2022, 282, 119058.	10.2	7
17	Processing, Characterization and Application of Micro and Nanocellulose Based Environmentally Friendly Polymer Composites., 2019,, 1-35.		5
18	THE EFFECT OF CELLULOSE NANOCRYSTALS IN SUGARCANE BAGASSE PARTICLEBOARDS OF PITH AND FIBERS. Cerne, 2019, 25, 203-213.	0.9	4

#	Article	IF	CITATIONS
19	Effects of short fibers and processing additives on <scp>HDPE</scp> composites properties reinforced with <scp><i>Pinus</i></scp> and <scp><i>Eucalyptus</i></scp> fibers. Journal of Applied Polymer Science, 2021, 138, 50178.	2.6	3