List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8364661/publications.pdf Version: 2024-02-01

		11651	19749
346	19,196	70	117
papers	citations	h-index	g-index
413	413	413	13828
all docs	docs citations	times ranked	citing authors

ADUN K CHOSH

#	Article	IF	CITATIONS
1	C2-Symmetric chiral bis(oxazoline)–metal complexes in catalytic asymmetric synthesis. Tetrahedron: Asymmetry, 1998, 9, 1-45.	1.8	824
2	Structure of the Protease Domain of Memapsin 2 (β-Secretase) Complexed with Inhibitor. Science, 2000, 290, 150-153.	12.6	717
3	Organic Carbamates in Drug Design and Medicinal Chemistry. Journal of Medicinal Chemistry, 2015, 58, 2895-2940.	6.4	493
4	A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16119-16124.	7.1	407
5	Novel bis-Tetrahydrofuranylurethane-Containing Nonpeptidic Protease Inhibitor (PI) UIC-94017 (TMC114) with Potent Activity against Multi-PI-Resistant Human Immunodeficiency Virus In Vitro. Antimicrobial Agents and Chemotherapy, 2003, 47, 3123-3129.	3.2	355
6	Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of HIV/AIDS. Journal of Medicinal Chemistry, 2016, 59, 5172-5208.	6.4	332
7	BACE1 (β-secretase) inhibitors for the treatment of Alzheimer's disease. Chemical Society Reviews, 2014, 43, 6765-6813.	38.1	274
8	Structure-Based Design:  Potent Inhibitors of Human Brain Memapsin 2 (β-Secretase). Journal of Medicinal Chemistry, 2001, 44, 2865-2868.	6.4	240
9	Design of HIV Protease Inhibitors Targeting Protein Backbone: An Effective Strategy for Combating Drug Resistance. Accounts of Chemical Research, 2008, 41, 78-86.	15.6	236
10	Design of Potent Inhibitors for Human Brain Memapsin 2 (β-Secretase). Journal of the American Chemical Society, 2000, 122, 3522-3523.	13.7	235
11	The Microtubule Stabilizing Agent Laulimalide Does Not Bind in the Taxoid Site, Kills Cells Resistant to Paclitaxel and Epothilones, and May Not Require Its Epoxide Moiety for Activity. Biochemistry, 2002, 41, 9109-9115.	2.5	231
12	Drug Development and Medicinal Chemistry Efforts toward SARSâ€Coronavirus and Covidâ€19 Therapeutics. ChemMedChem, 2020, 15, 907-932.	3.2	229
13	Developing βâ€secretase inhibitors for treatment of Alzheimer's disease. Journal of Neurochemistry, 2012, 120, 71-83.	3.9	227
14	High Resolution Crystal Structures of HIV-1 Protease with a Potent Non-peptide Inhibitor (UIC-94017) Active Against Multi-drug-resistant Clinical Strains. Journal of Molecular Biology, 2004, 338, 341-352.	4.2	205
15	Crystal Structure of Memapsin 2 (β-Secretase) in Complex with an Inhibitor OM00-3. Biochemistry, 2002, 41, 10963-10967.	2.5	204
16	Subsite Specificity of Memapsin 2 (β-Secretase): Implications for Inhibitor Designâ€. Biochemistry, 2001, 40, 10001-10006.	2.5	196
17	Darunavir, a conceptually new HIV-1 protease inhibitor for the treatment of drug-resistant HIV. Bioorganic and Medicinal Chemistry, 2007, 15, 7576-7580.	3.0	195
18	Total synthesis of (.+)-ginkgolide B. Journal of the American Chemical Society, 1988, 110, 649-651.	13.7	188

#	Article	IF	CITATIONS
19	β-Secretase as a Therapeutic Target for Alzheimer's Disease. Neurotherapeutics, 2008, 5, 399-408.	4.4	175
20	Urea Derivatives in Modern Drug Discovery and Medicinal Chemistry. Journal of Medicinal Chemistry, 2020, 63, 2751-2788.	6.4	174
21	Potent HIV protease inhibitors incorporating high-affinity P2-ligands and (R)-(hydroxyethylamino)sulfonamide isostere. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 687-690.	2.2	154
22	Structure-Based Design of Novel HIV-1 Protease Inhibitors To Combat Drug Resistance. Journal of Medicinal Chemistry, 2006, 49, 5252-5261.	6.4	144
23	Potent Inhibition of HIV-1 Replication by Novel Non-peptidyl Small Molecule Inhibitors of Protease Dimerization. Journal of Biological Chemistry, 2007, 282, 28709-28720.	3.4	137
24	Ultra-high Resolution Crystal Structure of HIV-1 Protease Mutant Reveals Two Binding Sites for Clinical Inhibitor TMC114. Journal of Molecular Biology, 2006, 363, 161-173.	4.2	136
25	A Potent Human Immunodeficiency Virus Type 1 Protease Inhibitor, UIC-94003 (TMC-126), and Selection of a Novel (A28S) Mutation in the Protease Active Site. Journal of Virology, 2002, 76, 1349-1358.	3.4	134
26	Stereoselective Photochemical 1,3-Dioxolane Addition to5-Alkoxymethyl-2(5H)-furanone:Â Synthesis of Bis-tetrahydrofuranyl Ligand for HIV Protease Inhibitor UIC-94017 (TMC-114). Journal of Organic Chemistry, 2004, 69, 7822-7829.	3.2	134
27	Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro). Journal of Biological Chemistry, 2015, 290, 19403-19422.	3.4	134
28	Effectiveness of Nonpeptide Clinical Inhibitor TMC-114 on HIV-1 Protease with Highly Drug Resistant Mutations D30N, I50V, and L90M. Journal of Medicinal Chemistry, 2006, 49, 1379-1387.	6.4	132
29	Enhancing Protein Backbone Binding—A Fruitful Concept for Combating Drugâ€Resistant HIV. Angewandte Chemie - International Edition, 2012, 51, 1778-1802.	13.8	131
30	Total Synthesis of Microtubule-Stabilizing Agent (â^')-Laulimalide1. Journal of Organic Chemistry, 2001, 66, 8973-8982.	3.2	130
31	Severe Acute Respiratory Syndrome Coronavirus Papain-like Novel Protease Inhibitors: Design, Synthesis, Proteinâ~Ligand X-ray Structure and Biological Evaluation. Journal of Medicinal Chemistry, 2010, 53, 4968-4979.	6.4	129
32	A small moleculeÂcompound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nature Communications, 2021, 12, 668.	12.8	126
33	Ring-closing metathesis strategy to unsaturated γ- and δ-lactones: Synthesis of hydroxyethylene isostere for protease inhibitors. Tetrahedron Letters, 1998, 39, 4651-4654.	1.4	123
34	Bis-Tetrahydrofuran: a Privileged Ligand for Darunavir and a New Generation of HIV Protease Inhibitors That Combat Drug Resistance. ChemMedChem, 2006, 1, 939-950.	3.2	116
35	Design and Synthesis of Peptidomimetic Severe Acute Respiratory Syndrome Chymotrypsin-like Protease Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 6767-6771.	6.4	114
36	Inhibitor Recognition Specificity of MERS-CoV Papain-like Protease May Differ from That of SARS-CoV. ACS Chemical Biology, 2015, 10, 1456-1465.	3.4	114

#	Article	IF	CITATIONS
37	Synergistic Effects of Peloruside A and Laulimalide with Taxoid Site Drugs, but Not with Each Other, on Tubulin Assembly. Molecular Pharmacology, 2006, 70, 1555-1564.	2.3	112
38	Diastereofacial selection in nitrile oxide cycloaddition reactions. The anti-directing effect of an allylic oxygen and some new results on the ring metalation of isoxazolines. A synthesis of (.+)-blastmycinone. Journal of Organic Chemistry, 1984, 49, 2762-2772.	3.2	110
39	Structure-Based Design, Synthesis, and Biological Evaluation of a Series of Novel and Reversible Inhibitors for the Severe Acute Respiratory Syndromeâ^'Coronavirus Papain-Like Protease. Journal of Medicinal Chemistry, 2009, 52, 5228-5240.	6.4	110
40	<i>In vivo</i> inhibition of Aβ production by memapsin 2 (βâ€secretase) inhibitors. Journal of Neurochemistry, 2004, 89, 1409-1416.	3.9	106
41	βâ€Secretase inhibitor GRLâ€8234 rescues ageâ€related cognitive decline in APP transgenic mice. FASEB Journal, 2011, 25, 775-784.	0.5	106
42	Synthesis of Enantiomerically Pure Anti-Aldols:  A Highly Stereoselective Ester-Derived Titanium Enolate Aldol Reaction. Journal of the American Chemical Society, 1996, 118, 2527-2528.	13.7	105
43	Syntheses of FDA Approved HIV Protease Inhibitors. Synthesis, 2001, 2001, 2203-2229.	2.3	103
44	N,N-dissuccinimidyl carbonate: a useful reagent for alkoxycarbonylation of amines. Tetrahedron Letters, 1992, 33, 2781-2784.	1.4	101
45	Nonpeptidal P2Ligands for HIV Protease Inhibitors:Â Structure-Based Design, Synthesis, and Biological Evaluation. Journal of Medicinal Chemistry, 1996, 39, 3278-3290.	6.4	99
46	Design and synthesis of novel HIV-1 protease inhibitors incorporating oxyindoles as the -ligands. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 1869-1873.	2.2	99
47	Design, synthesis and antiviral efficacy of a series of potent chloropyridyl ester-derived SARS-CoV 3CLpro inhibitors. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5684-5688.	2.2	99
48	Total Synthesis of (â^')-Laulimalide. Journal of the American Chemical Society, 2000, 122, 11027-11028.	13.7	98
49	Enantioselective Total Synthesis of (+)-Amphidinolide T1. Journal of the American Chemical Society, 2003, 125, 2374-2375.	13.7	96
50	Structure-based design, synthesis, and biological evaluation of peptidomimetic SARS-CoV 3CLpro inhibitors. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5876-5880.	2.2	94
51	Potent memapsin 2 (β-secretase) inhibitors: Design, synthesis, protein-ligand X-ray structure, and in vivo evaluation. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1031-1036.	2.2	93
52	Conformationally constrained bis(oxazoline) derived chiral catalyst: A highly effective enantioselective Diels-Alder reaction. Tetrahedron Letters, 1996, 37, 3815-3818.	1.4	91
53	3-Tetrahydrofuran and pyran urethanes as high-affinity P2-ligands for HIV-1 protease inhibitors. Journal of Medicinal Chemistry, 1993, 36, 292-294.	6.4	89
54	Enantioselective Total Synthesis of (+)-Largazole, a Potent Inhibitor of Histone Deacetylase. Organic Letters, 2008, 10, 3907-3909.	4.6	89

#	Article	IF	CITATIONS
55	Structure-based design of cycloamide–urethane-derived novel inhibitors of human brain memapsin 2 (β-secretase). Bioorganic and Medicinal Chemistry Letters, 2005, 15, 15-20.	2.2	87
56	Design, Synthesis, and X-ray Structure of Potent Memapsin 2 (β-Secretase) Inhibitors with Isophthalamide Derivatives as the P2-P3-Ligands. Journal of Medicinal Chemistry, 2007, 50, 2399-2407.	6.4	87
57	<i>In Vitro</i> Selection of Highly Darunavir-Resistant and Replication-Competent HIV-1 Variants by Using a Mixture of Clinical HIV-1 Isolates Resistant to Multiple Conventional Protease Inhibitors. Journal of Virology, 2010, 84, 11961-11969.	3.4	85
58	Diastereoselection in intermolecular nitrile oxide cycloaddition (NOC) reactions: confirmation of the "anti-periplanar effect" through a simple synthesis of 2-deoxy-D-ribose. Journal of the American Chemical Society, 1982, 104, 5788-5789.	13.7	84
59	Atomic resolution crystal structures of HIV-1 protease and mutants V82A and I84V with saquinavir. Proteins: Structure, Function and Bioinformatics, 2007, 67, 232-242.	2.6	84
60	Effect of Flap Mutations on Structure of HIV-1 Protease and Inhibition by Saquinavir and Darunavir. Journal of Molecular Biology, 2008, 381, 102-115.	4.2	81
61	Coronaviruses Resistant to a 3C-Like Protease Inhibitor Are Attenuated for Replication and Pathogenesis, Revealing a Low Genetic Barrier but High Fitness Cost of Resistance. Journal of Virology, 2014, 88, 11886-11898.	3.4	81
62	Synthesis and optical resolution of high affinity P2-ligands for HIV-1 protease inhibitors. Tetrahedron Letters, 1995, 36, 505-508.	1.4	80
63	The Curtius rearrangement: mechanistic insight and recent applications in natural product syntheses. Organic and Biomolecular Chemistry, 2018, 16, 2006-2027.	2.8	80
64	SYNTHETIC STUDIES OF ANTITUMOR MACROLIDE LAULIMALIDE: ENANTIOSELECTIVE SYNTHESIS OF THE C3-C14 SEGMENT BY A CATALYTIC HETERO DIELS-ALDER STRATEGY. Tetrahedron Letters, 1997, 38, 2427-2430.	1.4	77
65	Potent HIV protease inhibitors: the development of tetrahydrofuranylglycines as novel P2-ligands and pyrazine amides as P3-ligands. Journal of Medicinal Chemistry, 1993, 36, 2300-2310.	6.4	76
66	\hat{I}^2 -Secretase as a Therapeutic Target for Inhibitor Drugs. Current Medicinal Chemistry, 2002, 9, 1135-1144.	2.4	76
67	Structural Locations and Functional Roles of New Subsites S5, S6, and S7in Memapsin 2 (β-Secretase)â€,‡. Biochemistry, 2005, 44, 105-112.	2.5	76
68	Laulimalide and Paclitaxel: A Comparison of Their Effects on Tubulin Assembly and Their Synergistic Action When Present Simultaneously. Molecular Pharmacology, 2004, 66, 113-121.	2.3	75
69	Total Synthesis of (â^')-Platensimycin, a Novel Antibacterial Agent. Journal of Organic Chemistry, 2009, 74, 1163-1170.	3.2	75
70	Prediction of Potency of Protease Inhibitors Using Free Energy Simulations with Polarizable Quantum Mechanics-Based Ligand Charges and a Hybrid Water Model. Journal of Chemical Information and Modeling, 2009, 49, 2851-2862.	5.4	74
71	Enantioselective Synthesis of (â^)-Platensimycin Oxatetracyclic Core by Using an Intramolecular Dielsâ^'Alder Reaction. Organic Letters, 2007, 9, 4013-4016.	4.6	73
72	Interchangeable SF3B1 inhibitors interfere with pre-mRNA splicing at multiple stages. Rna, 2016, 22, 350-359.	3.5	73

#	Article	IF	CITATIONS
73	Enantioselective Total Synthesis of (â^')-Zampanolide, a Potent Microtubule-Stabilizing Agent. Organic Letters, 2011, 13, 4108-4111.	4.6	72
74	Total Synthesis and Structural Revision of (+)-Amphidinolide W. Journal of the American Chemical Society, 2004, 126, 3704-3705.	13.7	71
75	Structure-Based Design of HIV-1 Protease Inhibitors: Replacement of Two Amides and a 10.piAromatic System by a Fused Bis-tetrahydrofuran. Journal of Medicinal Chemistry, 1994, 37, 2506-2508.	6.4	70
76	cis-1-Aminoindan-2-ol in Asymmetric Syntheses. Synthesis, 1998, 1998, 937-961.	2.3	70
77	Counterions of BINAPâ^'Pt(II) and â^'Pd(II) Complexes:Â Novel Catalysts for Highly Enantioselective Dielsâ^'Alder Reaction. Organic Letters, 1999, 1, 2157-2159.	4.6	70
78	Dimerization of HIV-1 protease occurs through two steps relating to the mechanism of protease dimerization inhibition by darunavir. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12234-12239.	7.1	70
79	Design and Synthesis of Potent HIV-1 Protease Inhibitors Incorporating Hexahydrofuropyranol-Derived High Affinity P ₂ Ligands: Structureâ~'Activity Studies and Biological Evaluation. Journal of Medicinal Chemistry, 2011, 54, 622-634.	6.4	69
80	Total Synthesis of (+)-Sinefungin. Journal of Organic Chemistry, 1996, 61, 6175-6182.	3.2	68
81	Asymmetric hetero Diels-Alder reactions of Danishefsky's diene and glyoxylate esters catalyzed by chiral bisoxazoline derived catalysts. Tetrahedron: Asymmetry, 1996, 7, 2165-2168.	1.8	68
82	A stereoselective synthesis of (â^')-tetrahydrolipstatin. Chemical Communications, 1999, 1999, 1743-1744.	4.1	67
83	A Novel Bis-Tetrahydrofuranylurethane-Containing Nonpeptidic Protease Inhibitor (PI), GRL-98065, Is Potent against Multiple-PI-Resistant Human Immunodeficiency Virus In Vitro. Antimicrobial Agents and Chemotherapy, 2007, 51, 2143-2155.	3.2	66
84	Enantioselective Total Synthesis of Peloruside A:  A Potent Microtubule Stabilizer. Organic Letters, 2008, 10, 1001-1004.	4.6	66
85	Achmatowicz reaction and its application in the syntheses of bioactive molecules. RSC Advances, 2016, 6, 111564-111598.	3.6	66
86	The Curtius Rearrangement: Applications in Modern Drug Discovery and Medicinal Chemistry. ChemMedChem, 2018, 13, 2351-2373.	3.2	66
87	Design and Development of Highly Potent HIV-1 Protease Inhibitors with a Crown-Like Oxotricyclic Core as the P2-Ligand To Combat Multidrug-Resistant HIV Variants. Journal of Medicinal Chemistry, 2017, 60, 4267-4278.	6.4	64
88	Mn(III)-promoted annulation of enol ethers and esters to fused or spiro 2-cyclopentenones. Tetrahedron Letters, 1987, 28, 175-178.	1.4	63
89	Enantioselective Synthesis of (+)-Cryptophycin 52 (LY355703), a Potent Antimitotic Antitumor Agent. Journal of Organic Chemistry, 2003, 68, 9823-9826.	3.2	63
90	Total Synthesis and Revision of C6 Stereochemistry of (+)-Amphidinolide W. Journal of Organic Chemistry, 2006, 71, 1085-1093.	3.2	63

#	Article	IF	CITATIONS
91	Design, Synthesis and X-ray Structure of Proteinâ^'Ligand Complexes:Â Important Insight into Selectivity of Memapsin 2 (β-Secretase) Inhibitors. Journal of the American Chemical Society, 2006, 128, 5310-5311.	13.7	63
92	An efficient synthesis of hydroxyethylene dipeptide isosteres: the core unit of potent HIV-1 protease inhibitors. Journal of Organic Chemistry, 1991, 56, 6500-6503.	3.2	62
93	Transition-State Mimetics for HIV Protease Inhibitors:Â Stereocontrolled Synthesis of Hydroxyethylene and Hydroxyethylamine Isosteres by Ester-Derived Titanium Enolate Syn and Anti-Aldol Reactions. Journal of Organic Chemistry, 1998, 63, 6146-6152.	3.2	62
94	Coherence between Cellular Responses and in Vitro Splicing Inhibition for the Anti-tumor Drug Pladienolide B and Its Analogs. Journal of Biological Chemistry, 2014, 289, 1938-1947.	3.4	62
95	Total Synthesis of Antitumor Depsipeptide (â^')-Doliculide. Organic Letters, 2001, 3, 635-638.	4.6	61
96	Structure-Based Design:Â Synthesis and Biological Evaluation of a Series of Novel Cycloamide-Derived HIV-1 Protease Inhibitors. Journal of Medicinal Chemistry, 2005, 48, 3576-3585.	6.4	61
97	P-Glycoprotein Mediates Efflux Transport of Darunavir in Human Intestinal Caco-2 and ABCB1 Gene-Transfected Renal LLC-PK1 Cell Lines. Biological and Pharmaceutical Bulletin, 2009, 32, 1588-1593.	1.4	61
98	Joint X-ray/Neutron Crystallographic Study of HIV-1 Protease with Clinical Inhibitor Amprenavir: Insights for Drug Design. Journal of Medicinal Chemistry, 2013, 56, 5631-5635.	6.4	61
99	Asymmetric Total Synthesis of the Gastroprotective Microbial Agent AI-77-B. European Journal of Organic Chemistry, 2003, 2003, 821-832.	2.4	60
100	Design of HIV-1 Protease Inhibitors with Pyrrolidinones and Oxazolidinones as Novel P1â€2-Ligands To Enhance Backbone-Binding Interactions with Protease: Synthesis, Biological Evaluation, and Proteinâ^'Ligand X-ray Studies. Journal of Medicinal Chemistry, 2009, 52, 3902-3914.	6.4	60
101	A Stereoselective Synthesis of (+)-Herboxidiene/GEX1A. Organic Letters, 2011, 13, 66-69.	4.6	59
102	Assignment of Absolute Stereochemistry and Total Synthesis of (â^)-Spongidepsin. Organic Letters, 2004, 6, 2055-2058.	4.6	57
103	The Development of Cyclic Sulfolanes as Novel and High-Affinity P2 Ligands for HIV-1 Protease Inhibitors. Journal of Medicinal Chemistry, 1994, 37, 1177-1188.	6.4	56
104	Specificity of Memapsin 1 and Its Implications on the Design of Memapsin 2 (β-Secretase) Inhibitor Selectivity. Biochemistry, 2002, 41, 8742-8746.	2.5	56
105	Memapsin 2 (Beta-Secretase) Inhibitors: Drug Development. Current Alzheimer Research, 2008, 5, 121-131.	1.4	55
106	A Mouse Model for <i>Betacoronavirus</i> Subgroup 2c Using a Bat Coronavirus Strain HKU5 Variant. MBio, 2014, 5, e00047-14.	4.1	55
107	Indole Chloropyridinyl Ester-Derived SARS-CoV-2 3CLpro Inhibitors: Enzyme Inhibition, Antiviral Efficacy, Structure–Activity Relationship, and X-ray Structural Studies. Journal of Medicinal Chemistry, 2021, 64, 14702-14714.	6.4	55
108	Asymmetric Synthesis of (â^')-Tetrahydrolipstatin:  Ananti-Aldol-Based Strategy. Organic Letters, 2000, 2, 2405-2407.	4.6	53

#	Article	IF	CITATIONS
109	(â^')-Doliculide, a New Macrocyclic Depsipeptide Enhancer of Actin Assembly. Journal of Biological Chemistry, 2002, 277, 32165-32171.	3.4	53
110	Enantioselective Total Synthesis of Pladienolide B: A Potent Spliceosome Inhibitor. Organic Letters, 2012, 14, 4730-4733.	4.6	53
111	Total synthesis of ginkgolide a. Tetrahedron Letters, 1988, 29, 3205-3206.	1.4	52
112	Tartaric Acid and Tartrates in the Synthesis of Bioactive Molecules. Synthesis, 2001, 2001, 1281-1301.	2.3	52
113	GRL-0920, an Indole Chloropyridinyl Ester, Completely Blocks SARS-CoV-2 Infection. MBio, 2020, 11, .	4.1	52
114	Enantioselective Total Synthesis of (+)-Jasplakinolide. Organic Letters, 2007, 9, 2425-2427.	4.6	51
115	Enantioselective Total Synthesis of Macrolide Antitumor Agent (â^')-Lasonolide A. Organic Letters, 2007, 9, 1437-1440.	4.6	51
116	Selective inhibition of the West Nile virus methyltransferase by nucleoside analogs. Antiviral Research, 2013, 97, 232-239.	4.1	51
117	Highly enantioselective aldol reaction: development of a new chiral auxiliary from cis-1-amino-2-hydroxyindan. Journal of the Chemical Society Chemical Communications, 1992, 1992, 1673.	2.0	50
118	Asymmetric Synthesis of <i>anti-</i> Aldol Segments via a Nonaldol Route: Synthetic Applications to Statines and (â~')-Tetrahydrolipstatin. Journal of Organic Chemistry, 2009, 74, 4508-4518.	3.2	50
119	Cyclic sulfolanes as novel and high-affinity P2 ligands for HIV-1 protease inhibitors. Journal of Medicinal Chemistry, 1993, 36, 924-927.	6.4	49
120	Enantioselective Syntheses of FR901464 and Spliceostatin A: Potent Inhibitors of Spliceosome. Organic Letters, 2013, 15, 5088-5091.	4.6	49
121	Bis(oxazoline) derived cationic aqua complexes: highly effective catalysts for enantioselective Diels–Alder reactions. Tetrahedron: Asymmetry, 1998, 9, 3687-3691.	1.8	48
122	Peloruside B, A Potent Antitumor Macrolide from the New Zealand Marine Sponge Mycale hentscheli: Isolation, Structure, Total Synthesis, and Bioactivity. Journal of Organic Chemistry, 2010, 75, 2-10.	3.2	48
123	Development of Protease Inhibitors and the Fight with Drugâ€Resistant HIVâ€1 Variants. Advances in Pharmacology, 2008, 56, 169-197.	2.0	47
124	Probing Multidrugâ€Resistance and Protein–Ligand Interactions with Oxatricyclic Designed Ligands in HIVâ€i Protease Inhibitors. ChemMedChem, 2010, 5, 1850-1854.	3.2	47
125	Tetrahydrofuran, tetrahydropyran, triazoles and related heterocyclic derivatives as HIV protease inhibitors. Future Medicinal Chemistry, 2011, 3, 1181-1197.	2.3	47
126	Ester derived titanium enolate aldol reaction: Highly diastereoselective synthesis of syn- and anti-aldols. Tetrahedron Letters, 1997, 38, 7171-7174.	1.4	46

#	Article	IF	CITATIONS
127	Two-Step Synthesis of Furans by Mn(III)-Promoted Annulation of Enol Ethers. Chemistry Letters, 1987, 16, 223-226.	1.3	45
128	An enantioselective synthesis of the C2–C16 segment of antitumor macrolide laulimalide. Tetrahedron Letters, 2000, 41, 2319-2322.	1.4	45
129	A Convergent, Enantioselective Total Synthesis of Streptogramin Antibiotic (â^')-Madumycin IIâ€. Journal of Organic Chemistry, 1997, 62, 7908-7909.	3.2	44
130	Structural Evidence for Effectiveness of Darunavir and Two Related Antiviral Inhibitors against HIV-2 Protease. Journal of Molecular Biology, 2008, 384, 178-192.	4.2	44
131	Harnessing Nature's Insight: Design of Aspartyl Protease Inhibitors from Treatment of Drug-Resistant HIV to Alzheimer's Disease. Journal of Medicinal Chemistry, 2009, 52, 2163-2176.	6.4	44
132	A novel central nervous system-penetrating protease inhibitor overcomes human immunodeficiency virus 1 resistance with unprecedented aM to pM potency. ELife, 2017, 6, .	6.0	44
133	Potent HIV-1 protease inhibitors: stereoselective synthesis of a dipeptide mimic. Journal of Organic Chemistry, 1993, 58, 1025-1029.	3.2	43
134	An Asymmetric Total Synthesis of Brevisamide. Organic Letters, 2009, 11, 4164-4167.	4.6	43
135	Cu(II)-Catalyzed Olefin Migration and Prins Cyclization: Highly Diastereoselective Synthesis of Substituted Tetrahydropyrans. Organic Letters, 2011, 13, 4328-4331.	4.6	43
136	Highly Potent HIV-1 Protease Inhibitors with Novel Tricyclic P2 Ligands: Design, Synthesis, and Protein–Ligand X-ray Studies. Journal of Medicinal Chemistry, 2013, 56, 6792-6802.	6.4	42
137	Conformations of Laulimalide in DMSO-d6. Journal of the American Chemical Society, 2005, 127, 12838-12846.	13.7	41
138	Methods for pyranoannulation: an approach to a new class of polyethers. Journal of Organic Chemistry, 1985, 50, 3017-3019.	3.2	40
139	A stereoselective synthesis of (+)-boronolide. Tetrahedron Letters, 2000, 41, 1003-1006.	1.4	40
140	Stereoselective Synthesis of Pseudopeptide Microbial Agent Al-77-B. Organic Letters, 2001, 3, 2677-2680.	4.6	40
141	Potent New Antiviral Compound Shows Similar Inhibition and Structural Interactions with Drug Resistant Mutants and Wild Type HIV-1 Proteaseâ€. Journal of Medicinal Chemistry, 2007, 50, 4509-4515.	6.4	40
142	Flexible Cyclic Ethers/Polyethers as Novel P2-Ligands for HIV-1 Protease Inhibitors: Design, Synthesis, Biological Evaluation, and Proteinâ ^{~2} Ligand X-ray Studies. Journal of Medicinal Chemistry, 2008, 51, 6021-6033.	6.4	40
143	Design, Synthesis, Proteinâ^'Ligand X-ray Structure, and Biological Evaluation of a Series of Novel Macrocyclic Human Immunodeficiency Virus-1 Protease Inhibitors to Combat Drug Resistance. Journal of Medicinal Chemistry, 2009, 52, 7689-7705.	6.4	40
144	Loss of Protease Dimerization Inhibition Activity of Darunavir Is Associated with the Acquisition of Resistance to Darunavir by HIV-1. Journal of Virology, 2011, 85, 10079-10089.	3.4	40

#	Article	IF	CITATIONS
145	Structure based design: Novel spirocyclic ethers as nonpeptidal P2-ligands for HIV protease inhibitors. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 979-982.	2.2	39
146	Total Synthesis of (+)-Polyoxin J. Journal of Organic Chemistry, 1999, 64, 2789-2795.	3.2	39
147	Asymmetric hetero Diels–Alder route to quaternary carbon centers: synthesis of (â^')-malyngolide. Tetrahedron Letters, 2001, 42, 6231-6233.	1.4	39
148	The Structural Evolution of β-Secretase Inhibitors: A Focus on the Development of Small-Molecule Inhibitors. Current Topics in Medicinal Chemistry, 2013, 13, 1787-1807.	2.1	39
149	GRL-02031, a Novel Nonpeptidic Protease Inhibitor (PI) Containing a Stereochemically Defined Fused Cyclopentanyltetrahydrofuran Potent against Multi-PI-Resistant Human Immunodeficiency Virus Type 1 In Vitro. Antimicrobial Agents and Chemotherapy, 2009, 53, 997-1006.	3.2	38
150	Enantioselective Total Synthesis of (+)-Lithospermic Acid. Organic Letters, 2012, 14, 5046-5049.	4.6	38
151	Di(2-pyridyl) carbonate promoted alkoxycarbonylation of amines: A convenient synthesis of functionalized carbamates. Tetrahedron Letters, 1991, 32, 4251-4254.	1.4	37
152	Asymmetric Aldol Route to Hydroxyethylamine Isostere:Â Stereoselective Synthesis of the Core Unit of Saquinavir. Journal of Organic Chemistry, 1997, 62, 6080-6082.	3.2	37
153	Anharmonic modeling of the conformation-specific IR spectra of ethyl, <i>n</i> -propyl, and <i>n</i> -butylbenzene. Journal of Chemical Physics, 2016, 144, 224310.	3.0	37
154	Chemoselective catalytic hydrogenation of alkenes by Lindlar catalyst. Tetrahedron Letters, 1998, 39, 947-948.	1.4	36
155	An enantioselective synthesis of the C1î—,C9 segment of antitumor macrolide peloruside A. Tetrahedron Letters, 2003, 44, 3967-3969.	1.4	36
156	Structure-Based Design of Highly Selective β-Secretase Inhibitors: Synthesis, Biological Evaluation, and Protein–Ligand X-ray Crystal Structure. Journal of Medicinal Chemistry, 2012, 55, 9195-9207.	6.4	36
157	Total Synthesis of Potent Antitumor Macrolide (–)â€Zampanolide: An Oxidative Intramolecular Cyclizationâ€Based Strategy. European Journal of Organic Chemistry, 2012, 2012, 4130-4139.	2.4	36
158	Design of Highly Potent, Dualâ€Acting and Centralâ€Nervousâ€Systemâ€Penetrating HIVâ€1 Protease Inhibitors with Excellent Potency against Multidrugâ€Resistant HIVâ€1 Variants. ChemMedChem, 2018, 13, 803-815.	3.2	36
159	Mechanism of Darunavir (DRV)'s High Genetic Barrier to HIV-1 Resistance: A Key V32I Substitution in Protease Rarely Occurs, but Once It Occurs, It Predisposes HIV-1 To Develop DRV Resistance. MBio, 2018, 9, .	4.1	36
160	Stereocontrolled synthesis of HIV-1 protease inhibitors with C2-axis of symmetry. Tetrahedron Letters, 1991, 32, 5729-5732.	1.4	35
161	Cyclic sulfone-3-carboxamides as novel P2-ligands for Ro 31-8959 based HIV-1 protease inhibitors. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 83-88.	2.2	35
162	A Convergent, Enantioselective Total Synthesis of Hapalosin: A Drug with Multidrug-Resistance Reversing Activity. Angewandte Chemie International Edition in English, 1996, 35, 74-76.	4.4	35

#	Article	IF	CITATIONS
163	A Convergent Synthesis of (+)-Cryptophycin B, a Potent Antitumor Macrolide fromNostocsp. Cyanobacteria. Organic Letters, 2000, 2, 1573-1575.	4.6	35
164	TiCl4-Promoted Multicomponent Reaction:  A New Entry to Functionalized α-Amino Acids. Organic Letters, 2005, 7, 7-10.	4.6	35
165	Progress in Anti-SARS Coronavirus Chemistry, Biology and Chemotherapy. Annual Reports in Medicinal Chemistry, 2006, 41, 183-196.	0.9	35
166	The Isoxazoline Route to α-Methylen Lactones Tetrahedron Letters, 1983, 24, 2623-2626.	1.4	34
167	TiCl4 promoted three component coupling reaction: A new method for the synthesis of functionalized tetrahydrofurans and tetrahydropyrans. Tetrahedron Letters, 1999, 40, 1083-1086.	1.4	34
168	Extreme Multidrug Resistant HIV-1 Protease with 20 Mutations Is Resistant to Novel Protease Inhibitors with P1′-Pyrrolidinone or P2-Tris-tetrahydrofuran. Journal of Medicinal Chemistry, 2013, 56, 4017-4027.	6.4	34
169	Enantioselective Total Syntheses of FR901464 and Spliceostatin A and Evaluation of Splicing Activity of Key Derivatives. Journal of Organic Chemistry, 2014, 79, 5697-5709.	3.2	34
170	The Assembly-Inducing Laulimalide/Peloruside A Binding Site on Tubulin: Molecular Modeling and Biochemical Studies with [³ H]Peloruside A. Journal of Chemical Information and Modeling, 2010, 50, 2019-2028.	5.4	33
171	Chelation-Controlled Reduction:  Stereoselective Formation of syn-1,3-Diols and Synthesis of Compactin and Mevinolin Lactone. Journal of Organic Chemistry, 2002, 67, 8783-8788.	3.2	32
172	Synthetic studies of microtubule stabilizing agent peloruside A: an asymmetric synthesis of C10î—,C24 segment. Tetrahedron Letters, 2003, 44, 7659-7661.	1.4	32
173	Highly Diastereoselectiveanti-Aldol Reactions Utilizing the Titanium Enolate ofcis-2-Arylsulfonamido-1- acenaphthenyl Propionate. Organic Letters, 2003, 5, 1063-1066.	4.6	32
174	Stereoselective Chloroacetate Aldol Reactions:  Syntheses of Acetate Aldol Equivalents and Darzens Glycidic Esters. Organic Letters, 2004, 6, 2725-2728.	4.6	32
175	P2′ Benzene Carboxylic Acid Moiety Is Associated with Decrease in Cellular Uptake: Evaluation of Novel Nonpeptidic HIV-1 Protease Inhibitors Containing P2 <i>bis</i> -Tetrahydrofuran Moiety. Antimicrobial Agents and Chemotherapy, 2013, 57, 4920-4927.	3.2	32
176	Structural basis of intron selection by U2 snRNP in the presence of covalent inhibitors. Nature Communications, 2021, 12, 4491.	12.8	32
177	Highly stereoselective reduction of α-keto esters: Utility of cis-1-arylsulfonamido-2-indanols as chiral auxiliaries. Tetrahedron Letters, 1995, 36, 6811-6814.	1.4	32
178	Memapsin 2 (Beta-Secretase) Inhibitor Drug, between Fantasy and Reality. Current Alzheimer Research, 2007, 4, 418-422.	1.4	31
179	A Symmetryâ€Based Concise Formal Synthesis of Platencin, a Novel Lead against "Superbugsâ€. Angewandte Chemie - International Edition, 2009, 48, 5372-5375.	13.8	31
180	Design of HIV-1 Protease Inhibitors with C3-Substituted Hexahydrocyclopentafuranyl Urethanes as P2-Ligands: Synthesis, Biological Evaluation, and Protein–Ligand X-ray Crystal Structure. Journal of Medicinal Chemistry, 2011, 54, 5890-5901.	6.4	31

#	Article	IF	CITATIONS
181	Benzimidazole-Based Fabl Inhibitors: A Promising Novel Scaffold for Anti-staphylococcal Drug Development. ACS Infectious Diseases, 2017, 3, 54-61.	3.8	31
182	Design and Synthesis of Highly Potent HIV-1 Protease Inhibitors Containing Tricyclic Fused Ring Systems as Novel P2 Ligands: Structure–Activity Studies, Biological and X-ray Structural Analysis. Journal of Medicinal Chemistry, 2018, 61, 4561-4577.	6.4	31
183	Solution Kinetics Measurements Suggest HIV-1 Protease Has Two Binding Sites for Darunavir and Amprenavir. Journal of Medicinal Chemistry, 2008, 51, 6599-6603.	6.4	30
184	Synthetic studies of antitumor macrolide laulimalide: a stereoselective synthesis of the C17–C28 segment. Tetrahedron Letters, 2000, 41, 4705-4708.	1.4	29
185	Antiviral activity of UIC-PI, a novel inhibitor of the human immunodeficiency virus type 1 protease. Antiviral Research, 2002, 54, 29-36.	4.1	29
186	L-Selectride-Mediated Highly Diastereoselective Asymmetric Reductive Aldol Reaction: Access to an Important Subunit for Bioactive Molecules. Organic Letters, 2008, 10, 4811-4814.	4.6	29
187	Capturing the Essence of Organic Synthesis: From Bioactive Natural Products to Designed Molecules in Today's Medicine. Journal of Organic Chemistry, 2010, 75, 7967-7989.	3.2	28
188	Enantioselective total synthesis of macrolide (+)-neopeltolide. Organic and Biomolecular Chemistry, 2013, 11, 7768.	2.8	28
189	Insights into the Mechanism of Inhibition of CXCR4: Identification of Piperidinylethanamine Analogs as Anti-HIV-1 Inhibitors. Antimicrobial Agents and Chemotherapy, 2015, 59, 1895-1904.	3.2	28
190	A Short Synthesis of (±)-Eburnamonine. Journal of Organic Chemistry, 2000, 65, 5433-5435.	3.2	26
191	A macrolactonization-based strategy to obtain microtuble-stabilizing agent (â^')-laulimalide. Tetrahedron Letters, 2001, 42, 3399-3401.	1.4	26
192	Design, Synthesis, and X-ray Structure of Substituted Bis-tetrahydrofuran (Bis-THF)-Derived Potent HIV-1 Protease Inhibitors. ACS Medicinal Chemistry Letters, 2011, 2, 298-302.	2.8	26
193	Lasonolide A, a potent and reversible inducer of chromosome condensation. Cell Cycle, 2012, 11, 4424-4435.	2.6	26
194	Novel P2 Tris-tetrahydrofuran Group in Antiviral Compound 1 (GRL-0519) Fills the S2 Binding Pocket of Selected Mutants of HIV-1 Protease. Journal of Medicinal Chemistry, 2013, 56, 1074-1083.	6.4	26
195	Structure-based design, synthesis, X-ray studies, and biological evaluation of novel HIV-1 protease inhibitors containing isophthalamide-derived P2-ligands. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4903-4909.	2.2	26
196	Asymmetric Diels-Alder reaction: Cis-1-arylsulfonamido-2-indanols as highly effective chiral auxiliaries. Tetrahedron: Asymmetry, 1996, 7, 375-378.	1.8	25
197	Asymmetric alkylations and aldol reactions: (1S,2R)-2-aminocyclopentan-1-ol derived new chiral auxiliary. Tetrahedron: Asymmetry, 1997, 8, 821-824.	1.8	25
198	A Stereoselective Anti-Aldol Route to (3R,3aS,6aR)-Hexahydrofuro[2,3-b]furan-3-ol: A Key Ligand for a New Generation of HIV Protease Inhibitors. Synthesis, 2006, 2006, 3015-3018.	2.3	25

#	Article	IF	CITATIONS
199	Novel HIV-1 Protease Inhibitors (PIs) Containing a Bicyclic P2 Functional Moiety, Tetrahydropyrano-Tetrahydrofuran, That Are Potent against Multi-PI-Resistant HIV-1 Variants. Antimicrobial Agents and Chemotherapy, 2011, 55, 1717-1727.	3.2	25
200	Enantioselective synthesis of spiro[cyclohexane-1,3′-indolin]-2′-ones containing multiple stereocenters via organocatalytic Michael/aldol cascade reactions. Tetrahedron Letters, 2013, 54, 2311-2314.	1.4	25
201	Defining Viral Defective Ribosomal Products: Standard and Alternative Translation Initiation Events Generate a Common Peptide from Influenza A Virus M2 and M1 mRNAs. Journal of Immunology, 2016, 196, 3608-3617.	0.8	25
202	Intramolecular and intermolecular hydroxyl reactivity differences in ginkgolides A, B and C and their chemical applications. Tetrahedron Letters, 1992, 33, 6955-6958.	1.4	24
203	Ester derived titanium enolate aldol reaction: chelation controlled diastereoselective synthesis of syn -aldols. Tetrahedron Letters, 2001, 42, 1227-1231.	1.4	24
204	Stereoselective synthesis of the C1–C12 segment of iriomoteolide-1a: a very potent macrolide antitumor agent. Tetrahedron Letters, 2009, 50, 1416-1418.	1.4	24
205	Design of the anti-HIV protease inhibitor darunavir. , 2013, , 355-384.		24
206	GRL-0519, a Novel Oxatricyclic Ligand-Containing Nonpeptidic HIV-1 Protease Inhibitor (PI), Potently Suppresses Replication of a Wide Spectrum of Multi-PI-Resistant HIV-1 Variants <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2013, 57, 2036-2046.	3.2	24
207	Design and Synthesis of Potent HIV-1 Protease Inhibitors Containing Bicyclic Oxazolidinone Scaffold as the P2 Ligands: Structure–Activity Studies and Biological and X-ray Structural Studies. Journal of Medicinal Chemistry, 2018, 61, 9722-9737.	6.4	24
208	Synthesis of amide derivatives for electron deficient amines and functionalized carboxylic acids using EDC and DMAP and a catalytic amount of HOBt as the coupling reagents. Tetrahedron Letters, 2021, 63, 152719.	1.4	24
209	A Convenient Enzymatic Route to Optically Active 1-Aminoindan-2-ol: Versatile Ligands for HIV-1 Protease Inhibitors and Asymmetric Syntheses. Synthesis, 1997, 1997, 541-544.	2.3	22
210	Convenient synthesis of novel macrocyclic urethanes: alkoxycarbonylation of amines and ring-closing metathesis strategy. Tetrahedron Letters, 1998, 39, 1881-1884.	1.4	22
211	Asymmetric dihydroxylation route to a dipeptide isostere of a protease inhibitor: enantioselective synthesis of the core unit of ritonavir. Chemical Communications, 1999, 1999, 1025-1026.	4.1	22
212	A facile and enantiospecific synthesis of 2(S)- and 2 (R)[1′(S)-azido-2-phenylethyl]oxirane. Journal of the Chemical Society Chemical Communications, 1992, 1992, 273-274.	2.0	21
213	Total Synthesis of Potent Antitumor Agent (â^')â€Lasonolideâ€A: A Cycloadditionâ€Based Strategy. Chemistry - an Asian Journal, 2008, 3, 1811-1823.	3.3	21
214	Novel Protease Inhibitors (PIs) Containing Macrocyclic Components and 3(<i>R</i>),3a(<i>S</i>),6a() Tj ETQqQ Variants <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 3460-3470.	0 0 rgBT 3.2	Overlock 10 21
215	GRL-04810 and GRL-05010, Difluoride-Containing Nonpeptidic HIV-1 Protease Inhibitors (PIs) That Inhibit the Replication of Multi-PI-Resistant HIV-1 <i>In Vitro</i> and Possess Favorable Lipophilicity That May Allow Blood-Brain Barrier Penetration. Antimicrobial Agents and Chemotherapy, 2013, 57, 6110-6121.	3.2	21
216	Enantioselective Synthesis of Spliceostatin E and Evaluation of Biological Activity. Organic Letters,	4.6	21

2014, 16, 6200-6203. 216

4.6 21

#	Article	IF	CITATIONS
217	Structure-Based Design of Potent HIV-1 Protease Inhibitors with Modified P1-Biphenyl Ligands: Synthesis, Biological Evaluation, and Enzyme–Inhibitor X-ray Structural Studies. Journal of Medicinal Chemistry, 2015, 58, 5334-5343.	6.4	21
218	Enantioselective Synthesis of Thailanstatin A Methyl Ester and Evaluation of <i>in Vitro</i> Splicing Inhibition. Journal of Organic Chemistry, 2018, 83, 5187-5198.	3.2	21
219	TiCl4 promoted three component coupling reaction: an efficient method for the substituted tetrahydropyrilidene acetates. Tetrahedron Letters, 1999, 40, 4751-4754.	1.4	20
220	Stereoselective construction of quaternary carbon centers by three component coupling reactions. Tetrahedron Letters, 2000, 41, 8425-8429.	1.4	20
221	Asymmetric Multicomponent Reactions:  Diastereoselective Synthesis of Substituted Pyrrolidines and Prolines. Organic Letters, 2006, 8, 4509-4511.	4.6	20
222	Total Synthesis of GEX1Q1, Assignment of C-5 Stereoconfiguration and Evaluation of Spliceosome Inhibitory Activity. Organic Letters, 2014, 16, 3154-3157.	4.6	20
223	Design and synthesis of potent macrocyclic HIV-1 protease inhibitors involving P1–P2 ligands. Organic and Biomolecular Chemistry, 2014, 12, 6842-6854.	2.8	20
224	FeCl3-catalyzed tandem Prins and Friedel–Crafts cyclization: a highly diastereoselective route to polycyclic ring structures. Tetrahedron Letters, 2014, 55, 4251-4254.	1.4	20
225	Design of <i>gem</i> â€Difluoroâ€ <i>bis</i> â€Tetrahydrofuran as P2 Ligand for HIVâ€1â€Protease Inhibitors to Improve Brain Penetration: Synthesis, Xâ€ray Studies, and Biological Evaluation. ChemMedChem, 2015, 10, 107-115.	3.2	20
226	A Convergent Synthesis of the Proposed Structure of Antitumor Depsipeptide Stereocalpin A. Organic Letters, 2009, 11, 1963-1966.	4.6	19
227	Enantioselective Syntheses of the Proposed Structures of Cytotoxic Macrolides Iriomoteolide-1a and -1b. Organic Letters, 2010, 12, 3120-3123.	4.6	19
228	Structure-based design, synthesis, and biological evaluation of dihydroquinazoline-derived potent β-secretase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5460-5465.	2.2	19
229	Bifunctional cinchona alkaloid-squaramide-catalyzed highly enantioselective aza-Michael addition of indolines to α,β-unsaturated ketones. Tetrahedron Letters, 2013, 54, 3500-3502.	1.4	19
230	Synergistic Inhibitor Binding to the Papain‣ike Protease of Human SARS Coronavirus: Mechanistic and Inhibitor Design Implications. ChemMedChem, 2013, 8, 1361-1372.	3.2	19
231	Prospects of βâ€Secretase Inhibitors for the Treatment of Alzheimer's Disease. ChemMedChem, 2015, 10, 1463-1466.	3.2	19
232	X-ray structure and inhibition of the feline infectious peritonitis virus 3C-like protease: Structural implications for drug design. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5072-5077.	2.2	19
233	Enantioselective total synthesis and structural assignment of callyspongiolide. Organic and Biomolecular Chemistry, 2016, 14, 11357-11370.	2.8	19
234	Enantioselective Synthesis of Both Epimers at C-21 in the Proposed Structure of Cytotoxic Macrolide Callyspongiolide. Organic Letters, 2016, 18, 3274-3277.	4.6	19

#	Article	IF	CITATIONS
235	Drug Resistance Mutation L76V Alters Nonpolar Interactions at the Flap–Core Interface of HIV-1 Protease. ACS Omega, 2018, 3, 12132-12140.	3.5	19
236	Structure-Based Design of Highly Potent HIV-1 Protease Inhibitors Containing New Tricyclic Ring P2-Ligands: Design, Synthesis, Biological, and X-ray Structural Studies. Journal of Medicinal Chemistry, 2020, 63, 4867-4879.	6.4	19
237	Stereoselective synthesis of dihydroisocoumarin moiety of microbial agent Al-77-B: a Diels-Alder based strategy. Tetrahedron Letters, 1998, 39, 8803-8806.	1.4	18
238	Stereoselective Synthesis of Protected Thymine Polyoxin C via [2,3]-Wittigâ^'Still Rearrangement of Ribose-Derived Allylic Stannyl Ethers. Journal of Organic Chemistry, 1998, 63, 6735-6738.	3.2	18
239	Multicomponent Reactions: Synthesis of Spirocyclic Tetrahydropyran Derivatives by Prins Cyclization. Heterocycles, 2002, 58, 659.	0.7	18
240	Chelation-controlled ester-derived titanium enolate aldol reaction: diastereoselective syn-aldols with mono- and bidentate aldehydes. Tetrahedron Letters, 2002, 43, 5621-5624.	1.4	18
241	Structure-based design, synthesis and biological evaluation of novel Î ² -secretase inhibitors containing a pyrazole or thiazole moiety as the P3 ligand. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 668-672.	2.2	18
242	Structural and biological evaluation of a novel series of benzimidazole inhibitors of Francisella tularensis enoyl-ACP reductase (Fabl). Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1292-1296.	2.2	18
243	Characterization of a Drosophila Ortholog of the Cdc7 Kinase. Journal of Biological Chemistry, 2015, 290, 1332-1347.	3.4	18
244	Structural studies of antiviral inhibitor with HIV-1 protease bearing drug resistant substitutions of V32I, I47V and V82I. Biochemical and Biophysical Research Communications, 2019, 514, 974-978.	2.1	18
245	S-Adenosyl-Homocysteine Is a Weakly Bound Inhibitor for a Flaviviral Methyltransferase. PLoS ONE, 2013, 8, e76900.	2.5	18
246	Chiral Auxiliary Mediated Conjugate Reduction and Asymmetric Protonation: Synthesis of High Affinity Ligands for HIV Protease Inhibitors. Journal of Organic Chemistry, 1995, 60, 6198-6201.	3.2	17
247	Potent HIV-1 protease inhibitors incorporating meso-bicyclic urethanes as P2-ligands: structure-based design, synthesis, biological evaluation and protein–ligand X-ray studies. Organic and Biomolecular Chemistry, 2008, 6, 3703.	2.8	17
248	Substituent effects on P2-cyclopentyltetrahydrofuranyl urethanes: Design, synthesis, and X-ray studies of potent HIV-1 protease inhibitors. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2308-2311.	2.2	17
249	A Conserved Hydrogen-Bonding Network of P2 <i>bis</i> -Tetrahydrofuran-Containing HIV-1 Protease Inhibitors (Pls) with a Protease Active-Site Amino Acid Backbone Aids in Their Activity against PI-Resistant HIV. Antimicrobial Agents and Chemotherapy, 2014, 58, 3679-3688.	3.2	17
250	Enantioselective Total Synthesis of (+)-Amphirionin-4. Organic Letters, 2016, 18, 2296-2299.	4.6	16
251	Design, synthesis and in vitro splicing inhibition of desmethyl and carba-derivatives of herboxidiene. Organic and Biomolecular Chemistry, 2016, 14, 5263-5271.	2.8	16
252	Design of novel HIV-1 protease inhibitors incorporating isophthalamide-derived P2-P3 ligands: Synthesis, biological evaluation and X-ray structural studies of inhibitor-HIV-1 protease complex. Bioorganic and Medicinal Chemistry, 2017, 25, 5114-5127.	3.0	16

#	Article	IF	CITATIONS
253	GRL-09510, a Unique P2-Crown-Tetrahydrofuranylurethane -Containing HIV-1 Protease Inhibitor, Maintains Its Favorable Antiviral Activity against Highly-Drug-Resistant HIV-1 Variants in vitro. Scientific Reports, 2017, 7, 12235.	3.3	16
254	Differentiating Isomeric Deprotonated Glucuronide Drug Metabolites via Ion/Molecule Reactions in Tandem Mass Spectrometry. Analytical Chemistry, 2018, 90, 9426-9433.	6.5	16
255	Potent HIVâ€l Protease Inhibitors Containing Carboxylic and Boronic Acids: Effect on Enzyme Inhibition and Antiviral Activity and Proteinâ€Ligand Xâ€ray Structural Studies. ChemMedChem, 2019, 14, 1863-1872.	3.2	16
256	Activation of RAF1 (c-RAF) by the Marine Alkaloid Lasonolide A Induces Rapid Premature Chromosome Condensation. Marine Drugs, 2015, 13, 3625-3639.	4.6	15
257	Probing Lipophilic Adamantyl Group as the P1-Ligand for HIV-1 Protease Inhibitors: Design, Synthesis, Protein X-ray Structural Studies, and Biological Evaluation. Journal of Medicinal Chemistry, 2016, 59, 6826-6837.	6.4	15
258	C-5-Modified Tetrahydropyrano-Tetrahydofuran-Derived Protease Inhibitors (PIs) Exert Potent Inhibition of the Replication of HIV-1 Variants Highly Resistant to Various PIs, including Darunavir. Journal of Virology, 2016, 90, 2180-2194.	3.4	15
259	Enantioselective Synthesis of Spliceostatin G and Evaluation of Bioactivity of Spliceostatin G and Its Methyl Ester. Organic Letters, 2018, 20, 96-99.	4.6	15
260	Enantioselective Synthesis of a Cyclopropane Derivative of Spliceostatin A and Evaluation of Bioactivity. Organic Letters, 2018, 20, 7293-7297.	4.6	15
261	An efficient synthesis of functionalized urethanes from azides. Journal of the Chemical Society Chemical Communications, 1992, 1992, 1308.	2.0	14
262	Design and Synthesis of Stereochemically Defined Novel Spirocyclic P2-Ligands for HIV-1 Protease Inhibitors. Organic Letters, 2008, 10, 5135-5138.	4.6	14
263	Synthesis and biological evaluation of novel allophenylnorstatine-based HIV-1 protease inhibitors incorporating high affinity P2-ligands. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1241-1246.	2.2	14
264	A tandem olefin migration and Prins cyclization using Cu(OTf)2–bisphosphine complexes: an improved synthesis of functionalized tetrahydropyrans. Tetrahedron Letters, 2012, 53, 3699-3702.	1.4	14
265	The Design, Development, and Evaluation of BACE1 Inhibitors for the Treatment of Alzheimer's Disease. Topics in Medicinal Chemistry, 2016, , 27-85.	0.8	14
266	A Modified P1 Moiety Enhances <i>In Vitro</i> Antiviral Activity against Various Multidrug-Resistant HIV-1 Variants and <i>In Vitro</i> Central Nervous System Penetration Properties of a Novel Nonpeptidic Protease Inhibitor, GRL-10413. Antimicrobial Agents and Chemotherapy, 2016, 60, 7046-7059.	3.2	14
267	Stereoselective Synthesis of Substituted Oxocene Cores by Lewis Acid Promoted Cyclization. Organic Letters, 2016, 18, 396-399.	4.6	14
268	Design, synthesis, and X-ray structural studies of BACE-1 inhibitors containing substituted 2-oxopiperazines as P1′-P2′ ligands. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2432-2438.	2.2	14
269	An enantioselective synthesis of the core unit of the non-nucleoside reverse transcriptase inhibitor taurospongin A. Tetrahedron: Asymmetry, 2003, 14, 629-634.	1.8	13
270	Asymmetric Syntheses of Potent Antitumor Macrolides Cryptophycin B and Arenastatin A. European Journal of Organic Chemistry, 2004, 2004, 2131-2141.	2.4	13

#	Article	IF	CITATIONS
271	Enantioselective synthesis of cyclopentyltetrahydrofuran (Cp-THF), an important high-affinity P2-ligand for HIV-1 protease inhibitors. Tetrahedron Letters, 2008, 49, 3409-3412.	1.4	13
272	Potent Antiviral HIV-1 Protease Inhibitor GRL-02031 Adapts to the Structures of Drug Resistant Mutants with Its P1′-Pyrrolidinone Ring. Journal of Medicinal Chemistry, 2012, 55, 3387-3397.	6.4	13
273	Stereoselective Synthesis of Both Tetrahydropyran Rings of the Antitumor Macrolide, (â^')-Lasonolide A. Journal of Organic Chemistry, 2012, 77, 2559-2565.	3.2	13
274	TiCl ₄ -Promoted Tandem Carbonyl or Imine Addition and Friedel–Crafts Cyclization: Synthesis of Benzo-Fused Oxabicyclooctanes and Nonanes. Organic Letters, 2012, 14, 2002-2005.	4.6	13
275	Design of HIV-1 Protease Inhibitors with Amino-bis-tetrahydrofuran Derivatives as P2-Ligands to Enhance Backbone-Binding Interactions: Synthesis, Biological Evaluation, and Protein–Ligand X-ray Studies. Journal of Medicinal Chemistry, 2015, 58, 6994-7006.	6.4	13
276	Enantioselective Syntheses of (–)â€Alloyohimbane and (–)‥ohimbane by an Efficient Enzymatic Desymmetrization Process. European Journal of Organic Chemistry, 2016, 2016, 6001-6009.	2.4	13
277	Potent antiviral HIV-1 protease inhibitor combats highly drug resistant mutant PR20. Biochemical and Biophysical Research Communications, 2019, 519, 61-66.	2.1	13
278	Single atom changes in newly synthesized HIV protease inhibitors reveal structural basis for extreme affinity, high genetic barrier, and adaptation to the HIV protease plasticity. Scientific Reports, 2020, 10, 10664.	3.3	13
279	Spliceostatins and Derivatives: Chemical Syntheses and Biological Properties of Potent Splicing Inhibitors. Journal of Natural Products, 2021, 84, 1681-1706.	3.0	13
280	Stereoselective synthesis of 5-O-carbamoylpolyoxamic acid by [2,3]-Wittig-Still rearrangement. Tetrahedron, 1999, 55, 13369-13376.	1.9	12
281	Novel cyclourethane-Derived HIV protease inhibitors: A ring-closing olefin metathesis based strategy. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1993-1996.	2.2	12
282	Synthesis and biological evaluation of new jasplakinolide (jaspamide) analogs. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5104-5107.	2.2	12
283	Highly diastereoselective synthesis of modified nucleosides via an asymmetric multicomponent reaction. Chemical Communications, 2010, 46, 1218.	4.1	12
284	A Stereoselective Synthesis of (â^')-Viridiofungin A Utilizing a TiCl4-Promoted Asymmetric Multicomponent Reaction. Organic Letters, 2012, 14, 510-512.	4.6	12
285	An intramolecular cascade cyclization of 2-aryl indoles: efficient methods for the construction of 2,3-functionalized indolines and 3-indolinones. Organic and Biomolecular Chemistry, 2014, 12, 3567-3571.	2.8	12
286	Halogen Bond Interactions of Novel HIV-1 Protease Inhibitors (PI) (GRL-001-15 and GRL-003-15) with the Flap of Protease Are Critical for Their Potent Activity against Wild-Type HIV-1 and Multi-PI-Resistant Variants. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	12
287	Design of potent and highly selective inhibitors for human β-secretase 2 (memapsin 1), a target for type 2 diabetes. Chemical Science, 2016, 7, 3117-3122.	7.4	11
288	Novel Protease Inhibitors Containing C-5-Modified <i>bis</i> -Tetrahydrofuranylurethane and Aminobenzothiazole as P2 and P2′ Ligands That Exert Potent Antiviral Activity against Highly Multidrug-Resistant HIV-1 with a High Genetic Barrier against the Emergence of Drug Resistance. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	11

#	Article	IF	CITATIONS
289	Copper-Catalyzed Stille Cross-Coupling Reaction and Application in the Synthesis of the Spliceostatin Core Structure. Journal of Organic Chemistry, 2020, 85, 8111-8120.	3.2	11
290	Asymmetric multicomponent reactions: convenient access to acyclic stereocenters and functionalized cyclopentenoids. Tetrahedron: Asymmetry, 2008, 19, 1020-1026.	1.8	10
291	An enantioselective synthesis of a MEM-protected aetheramide A derivative. Tetrahedron Letters, 2014, 55, 5191-5194.	1.4	10
292	A Novel Tricyclic Ligand-Containing Nonpeptidic HIV-1 Protease Inhibitor, GRL-0739, Effectively Inhibits the Replication of Multidrug-Resistant HIV-1 Variants and Has a Desirable Central Nervous System Penetration Property <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2015, 59, 2625-2635.	3.2	10
293	Design, synthesis, biological evaluation and X-ray structural studies of HIV-1 protease inhibitors containing substituted fused-tetrahydropyranyl tetrahydrofuran as P2-ligands. Organic and Biomolecular Chemistry, 2015, 13, 11607-11621.	2.8	10
294	Total syntheses of both enantiomers of amphirionin 4: A chemoenzymatic based strategy for functionalized tetrahydrofurans. Tetrahedron, 2017, 73, 1820-1830.	1.9	10
295	A fission yeast cell-based system for multidrug resistant HIV-1 proteases. Cell and Bioscience, 2017, 7, 5.	4.8	10
296	Potent HIV-1 protease inhibitors incorporating squaramide-derived P2 ligands: Design, synthesis, and biological evaluation. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 2565-2570.	2.2	10
297	Development of an Efficient Enzyme Production and Structure-Based Discovery Platform for BACE1 Inhibitors. Biochemistry, 2019, 58, 4424-4435.	2.5	10
298	Enantioselective Total Synthesis of (+)-Monocerin, a Dihydroisocoumarin Derivative with Potent Antimalarial Properties. Journal of Organic Chemistry, 2019, 84, 6191-6198.	3.2	10
299	Highly Selective and Potent Human βâ€Secretaseâ€2 (BACE2) Inhibitors against Typeâ€2 Diabetes: Design, Synthesis, Xâ€ray Structure and Structure–Activity Relationship Studies. ChemMedChem, 2019, 14, 545-560.	3.2	10
300	Synthetic studies of nucleoside antibiotics: a formal synthesis of (+)-sinefungin. Journal of the Chemical Society Perkin Transactions 1, 1999, 1999, 3597-3601.	0.9	9
301	Diastereoselective Synthesis of Substituted Tetrahydropyrans by Copper(II)–Bisphosphine-Catalyzed Olefin Migration and Prins Cyclization. Synthesis, 2012, 44, 3579-3589.	2.3	9
302	Synthesis of functionalized 4-methylenetetrahydropyrans by oxidative activation of cinnamyl or benzyl ethers. Tetrahedron Letters, 2012, 53, 2568-2570.	1.4	9
303	Lewis Acid Mediated Cyclizations: Diastereoselective Synthesis of Six- to Eight-Membered Substituted Cyclic Ethers. Synthesis, 2017, 49, 4229-4246.	2.3	9
304	Determination of absolute configuration and binding efficacy of benzimidazole-based FabI inhibitors through the support of electronic circular dichroism and MM-GBSA techniques. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2074-2079.	2.2	9
305	Novel Central Nervous System (CNS)-Targeting Protease Inhibitors for Drug-Resistant HIV Infection and HIV-Associated CNS Complications. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	9
306	Enantioselective Total Syntheses of (+)-Fendleridine and (+)-Acetylaspidoalbidine. Journal of Organic Chemistry, 2019, 84, 5167-5175.	3.2	9

#	Article	IF	CITATIONS
307	Chloropyridinyl Esters of Nonsteroidal Anti-Inflammatory Agents and Related Derivatives as Potent SARS-CoV-2 3CL Protease Inhibitors. Molecules, 2021, 26, 5782.	3.8	9
308	Substituted Bis-THF Protease Inhibitors with Improved Potency against Highly Resistant Mature HIV-1 Protease PR20. Journal of Medicinal Chemistry, 2015, 58, 5088-5095.	6.4	8
309	An enantioselective synthesis of the C3–C21 segment of the macrolide immunosuppressive agent FR252921. Tetrahedron Letters, 2016, 57, 2884-2887.	1.4	8
310	Design, Synthesis, Biological Evaluation, and Xâ€ray Studies of HIVâ€1 Protease Inhibitors with Modified P2′ Ligands of Darunavir. ChemMedChem, 2017, 12, 1942-1952.	3.2	8
311	GRL-079, a Novel HIV-1 Protease Inhibitor, Is Extremely Potent against Multidrug-Resistant HIV-1 Variants and Has a High Genetic Barrier against the Emergence of Resistant Variants. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	8
312	Activity and structural analysis of GRL-117C: a novel small molecule CCR5 inhibitor active against R5-tropic HIV-1s. Scientific Reports, 2019, 9, 4828.	3.3	8
313	Herboxidiene Features That Mediate Conformation-Dependent SF3B1 Interactions to Inhibit Splicing. ACS Chemical Biology, 2021, 16, 520-528.	3.4	8
314	Highly Diastereoselective Intramolecular Asymmetric Oxidopyrylium-olefin [5 + 2] Cycloaddition and Synthesis of 8-Oxabicyclo[3.2.1]oct-3-enone Containing Ring Systems. Journal of Organic Chemistry, 2021, 86, 8127-8142.	3.2	8
315	Synthesis of Bioactive Natural Products by Asymmetric syn- and anti-Aldol Reactions. Synthesis, 2009, 2009, 2992-3002.	2.3	7
316	A Convergent Synthesis of Carbocyclic Sinefungin and its Câ€5 Epimer. European Journal of Organic Chemistry, 2014, 2014, 6761-6768.	2.4	7
317	Enantioselective synthesis of dioxatriquinane structural motifs for HIV-1 protease inhibitors using a cascade radical cyclization. Tetrahedron Letters, 2015, 56, 3314-3317.	1.4	7
318	Design, synthesis, X-ray studies, and biological evaluation of novel macrocyclic HIV-1 protease inhibitors involving the P1′-P2′ ligands. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4925-4931.	2.2	7
319	Nature Inspired Molecular Design: Stereoselective Synthesis of Bicyclic and Polycyclic Ethers for Potent HIVâ€1 Protease Inhibitors. Asian Journal of Organic Chemistry, 2018, 7, 1448-1466.	2.7	7
320	Enantioselective Total Synthesis of (+)-EBC-23, a Potent Anticancer Agent from the Australian Rainforest. Journal of Organic Chemistry, 2021, 86, 6351-6360.	3.2	7
321	HIV-Associated Neurocognitive Disorder (HAND) and the Prospect of Brain-Penetrating Protease Inhibitors for Antiretroviral Treatment. Medical Research Archives, 2017, 5, .	0.2	7
322	Stereoselective Synthesis of the C11-N26 Fragment of Griseoviridin. Synthesis, 2002, 2002, 371-374.	2.3	6
323	Metabolism-directed structure optimization of benzimidazole-based <i>Francisella tularensis</i> enoyl-reductase (Fabl) inhibitors. Xenobiotica, 2014, 44, 404-416.	1.1	6
324	Highly stereoselective asymmetric aldol routes to inhibitors. Tetrahedron Letters, 2017, 58, 4062-4065.	1.4	6

#	Article	IF	CITATIONS
325	Enantioselective total synthesis of decytospolide A and decytospolide B using an Achmatowicz reaction. Organic and Biomolecular Chemistry, 2018, 16, 5979-5986.	2.8	6
326	Fluorescent Probes for Monitoring Serine Ubiquitination. Biochemistry, 2020, 59, 1309-1313.	2.5	6
327	Design, Synthesis, and X-ray Studies of Potent HIV-1 Protease Inhibitors with P2-Carboxamide Functionalities. ACS Medicinal Chemistry Letters, 2020, 11, 1965-1972.	2.8	6
328	The Chiron Approach to (3 <i>R</i> ,3 <i>aS</i> ,6 <i>aR</i>)-Hexahydrofuro[2,3- <i>b</i>]furan-3-ol, a Key Subunit of HIV-1 Protease Inhibitor Drug, Darunavir. Journal of Organic Chemistry, 2021, 86, 1216-1222.	3.2	6
329	An enantioselective enzymatic desymmetrization route to hexahydro-4H-furopyranol, a high-affinity ligand for HIV-1 protease inhibitors. Tetrahedron Letters, 2017, 58, 3230-3233.	1.4	5
330	A Photochemical Route to Optically Active Hexahydro-4 <i>H</i> -furopyranol, a High-Affinity P2 Ligand for HIV-1 Protease Inhibitors. Journal of Organic Chemistry, 2019, 84, 9801-9805.	3.2	5
331	A novel HIV-1 protease inhibitor, GRL-044, has potent activity against various HIV-1s with an extremely high genetic barrier to the emergence of HIV-1 drug resistance. Global Health & Medicine, 2019, 1, 36-48.	1.4	5
332	Lewis Acid-Catalyzed Vinyl Acetal Rearrangement of 4,5-Dihydro-1,3-dioxepines: Stereoselective Synthesis of <i>cis-</i> and <i>trans-</i> 2,3-Disubstituted Tetrahydrofurans. Journal of Organic Chemistry, 2020, 85, 10399-10412.	3.2	5
333	Fluorine Modifications Contribute to Potent Antiviral Activity against Highly Drug-Resistant HIV-1 and Favorable Blood-Brain Barrier Penetration Property of Novel Central Nervous System-Targeting HIV-1 Protease Inhibitors <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0171521.	3.2	5
334	Design, synthesis, and X-ray studies of potent HIV-1 protease inhibitors incorporating aminothiochromane and aminotetrahydronaphthalene carboxamide derivatives as the P2 ligands. European Journal of Medicinal Chemistry, 2018, 160, 171-182.	5.5	4
335	A Structure-Based Discovery Platform for BACE2 and the Development of Selective BACE Inhibitors. ACS Chemical Neuroscience, 2021, 12, 581-588.	3.5	4
336	Design, synthesis, X-ray studies, and biological evaluation of novel BACE1 inhibitors with bicyclic isoxazoline carboxamides as the P3 ligand. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2605-2610.	2.2	3
337	Novel HIV PR inhibitors with C4-substituted bis-THF and bis-fluoro-benzyl target the two active site mutations of highly drug resistant mutant PRS17. Biochemical and Biophysical Research Communications, 2021, 566, 30-35.	2.1	3
338	Design and synthesis of herboxidiene derivatives that potently inhibit <i>in vitro</i> splicing. Organic and Biomolecular Chemistry, 2021, 19, 1365-1377.	2.8	3
339	Asymmetric Diels–Alder reaction of 3-(acyloxy)acryloyl oxazolidinones: optically active synthesis of a high-affinity ligand for potent HIV-1 protease inhibitors. RSC Advances, 2019, 9, 41755-41763.	3.6	2
340	Convergent synthesis of (+)-carambolaflavone A, an antidiabetic agent using a bismuth triflate-catalyzed <i>C</i> -aryl glycosylation. Organic and Biomolecular Chemistry, 2022, 20, 2822-2830.	2.8	2
341	Design, Synthesis and Xâ€Ray Structural Studies of Potent HIVâ€1 Protease Inhibitors Containing Câ€4 Substituted Tricyclic Hexahydroâ€Furofuran Derivatives as P2 Ligands. ChemMedChem, 2022, 17, .	3.2	2
342	Asymmetric 1,2â€Carbamoyl Rearrangement of Lithiated Chiral Oxazolidine Carbamates and Diastereoselective Synthesis of αâ€Hydroxy Amides. Chemistry - A European Journal, 2022, 28, .	3.3	2

#	Article	IF	CITATIONS
343	Chiral Bis(oxazolines). Chemistry of Heterocyclic Compounds (New York, 1951): A Series of Monographs, 2004, , 529-594.	0.0	1
344	U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors. PLoS ONE, 2021, 16, e0258551.	2.5	0
345	Metabolismâ€Directed Structure Optimization of Benzimidazoleâ€Based F. Tularensis Enoylâ€Reductase (Fabl) Inhibitors. FASEB Journal, 2013, 27, 664.3.	0.5	0
346	Highly Diastereoselective asymmetric syn-aldol reactions of (R)-(N-tosyl)phenylalaninol propionate-derived titanium enolate and bidentate aromatic and aliphatic aldehydes. Tetrahedron Letters, 2022, , 153954.	1.4	0