List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8364420/publications.pdf

Version: 2024-02-01

		94433	149698
150	4,647	37	56
papers	citations	h-index	g-index
152	152	152	4393
all docs	docs citations	times ranked	citing authors

IAN HANNES

#	Article	IF	CITATIONS
1	Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environmental Microbiology, 2005, 7, 519-529.	3.8	252
2	Relationships between water level fluctuations and vegetation diversity in shallow water of New Zealand lakes. Aquatic Botany, 2002, 74, 133-148.	1.6	165
3	Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. Water (Switzerland), 2020, 12, 260.	2.7	117
4	Desiccation and recovery of antarctic cyanobacterial mats. Polar Biology, 1992, 12, 587.	1.2	114
5	Discovery of large conical stromatolites in Lake Untersee, Antarctica. Geobiology, 2011, 9, 280-293.	2.4	97
6	The rise of toxic benthic Phormidium proliferations: A review of their taxonomy, distribution, toxin content and factors regulating prevalence and increased severity. Harmful Algae, 2016, 55, 282-294.	4.8	94
7	PHOTOSYNTHESIS IN AN EXTREME SHADE ENVIRONMENT: BENTHIC MICROBIAL MATS FROM LAKE HOARE, A PERMANENTLY ICE-COVERED ANTARCTIC LAKE. Journal of Phycology, 1999, 35, 448-459.	2.3	86
8	Effects of freezing and thawing on a species of Zygnema (Chlorophyta) from the Antarctic. Phycologia, 1990, 29, 326-331.	1.4	83
9	Broad-scale factors influencing the biodiversity of coastal benthic communities of the Ross Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 959-971.	1.4	78
10	ABSORPTION AND UTILIZATION OF IRRADIANCE BY CYANOBACTERIAL MATS IN TWO ICE-COVERED ANTARCTIC LAKES WITH CONTRASTING LIGHT CLIMATES. Journal of Phycology, 2001, 37, 5.	2.3	76
11	Effects of invasive macrophytes on littoral-zone productivity and foodweb dynamics in a New Zealand high-country lake. Journal of the North American Benthological Society, 2005, 24, 300-320.	3.1	73
12	Microbial Mat Communities along an Oxygen Gradient in a Perennially Ice-Covered Antarctic Lake. Applied and Environmental Microbiology, 2016, 82, 620-630.	3.1	69
13	Contrasting cyanobacterial communities and microcystin concentrations in summers with extreme weather events: insights into potential effects of climate change. Hydrobiologia, 2017, 785, 71-89.	2.0	64
14	Salt deliquescence drives photosynthesis in the hyperarid <scp>A</scp> tacama <scp>D</scp> esert. Environmental Microbiology Reports, 2013, 5, 583-587.	2.4	63
15	Entrapped Sediments as a Source of Phosphorus in Epilithic Cyanobacterial Proliferations in Low Nutrient Rivers. PLoS ONE, 2015, 10, e0141063.	2.5	63
16	Carbon flow in the littoral food web of an oligotrophic lake. Hydrobiologia, 2000, 441, 93-106.	2.0	61
17	Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica. Limnology and Oceanography, 2006, 51, 1801-1812.	3.1	60
18	A Comparative Assessment of Ensemble-Based Machine Learning and Maximum Likelihood Methods for Mapping Seagrass Using Sentinel-2 Imagery in Tauranga Harbor, New Zealand. Remote Sensing, 2020, 12, 355.	4.0	60

#	Article	IF	CITATIONS
19	N2-Fixation in Cyanobacterial Mats from Ponds on the McMurdo Ice Shelf, Antarctica. Microbial Ecology, 2001, 42, 338-349.	2.8	58
20	Effect of wave exposure on vegetation abundance, richness and depth distribution of shallow water plants in a New Zealand lake. Freshwater Biology, 2003, 48, 75-87.	2.4	58
21	Tetrodotoxin in marine bivalves and edible gastropods: A mini-review. Chemosphere, 2019, 236, 124404.	8.2	58
22	Nutrients and their effects on phytoplankton populations in lakes on Signy Island, Antarctica. Polar Biology, 1983, 2, 115-126.	1.2	55
23	Reduction of UV-B radiation causes an enhancement of photoinhibition in high light stressed aquatic plants from New Zealand lakes. Journal of Photochemistry and Photobiology B: Biology, 2006, 84, 89-102.	3.8	55
24	Antarctic microbial mats: A modern analog for Archean lacustrine oxygen oases. Geology, 2015, 43, 887-890.	4.4	55
25	Antarctic ecosystems in transition – life between stresses and opportunities. Biological Reviews, 2021, 96, 798-821.	10.4	53
26	Filamentous green algae in freshwater streams on Signy Island, Antarctica. Hydrobiologia, 1989, 172, 1-18.	2.0	52
27	Cyanobacterial diversity in benthic mats of the McMurdo Dry Valley lakes, Antarctica. Polar Biology, 2015, 38, 1097-1110.	1.2	52
28	Microbial Communities and Their Predicted Metabolic Functions in Growth Laminae of a Unique Large Conical Mat from Lake Untersee, East Antarctica. Frontiers in Microbiology, 2017, 8, 1347.	3.5	51
29	Effects of changing water clarity on characean biomass and species composition in a large oligotrophic lake. Aquatic Botany, 1997, 56, 169-181.	1.6	50
30	In situ metabolism in halite endolithic microbial communities of the hyperarid Atacama Desert. Frontiers in Microbiology, 2015, 6, 1035.	3.5	50
31	Species-specific depth zonation in New Zealand charophytes as a function of light availability. Aquatic Botany, 2002, 72, 209-217.	1.6	49
32	Photosynthetic isotope biosignatures in laminated micro-stromatolitic and non-laminated nodules associated with modern, freshwater microbialites in Pavilion Lake, B.C Chemical Geology, 2010, 274, 56-67.	3.3	48
33	Benthic primary production in polar lakes and rivers. , 2008, , 179-196.		48
34	Removal of settled sediments and periphyton from macrophytes by grazing invertebrates in the littoral zone of a large oligotrophic lake. Freshwater Biology, 2000, 44, 311-326.	2.4	47
35	Freshwater stream ecosystems of James Ross Island, Antarctica. Antarctic Science, 1991, 3, 265-271.	0.9	46
36	A phylogenetically novel cyanobacterium most closely related to <i>Gloeobacter</i> . ISME Journal, 2020, 14, 2142-2152.	9.8	45

#	Article	IF	CITATIONS
37	Macroalgal photosynthesis near the southern global limit for growth; Cape Evans, Ross Sea, Antarctica. Polar Biology, 2003, 26, 789-799.	1.2	42
38	Benthic primary production in two perennially ice-covered Antarctic lakes: patterns of biomass accumulation with a model of community metabolism. Antarctic Science, 2001, 13, 18-27.	0.9	40
39	Light climate and phytoplankton photosynthesis in maritime Antarctic lakes. Hydrobiologia, 1985, 123, 69-79.	2.0	39
40	Abrupt environmental change in Canada's northernmost lake inferred from fossil diatom and pigment stratigraphy. Geophysical Research Letters, 2007, 34, .	4.0	38
41	Lake Vanda: A sentinel for climate change in the McMurdo Sound Region of Antarctica. Global and Planetary Change, 2016, 144, 213-227.	3.5	38
42	Penetration of solar ultraviolet radiation into New Zealand lakes: influence of dissolved organic carbon and catchment vegetation. Limnology, 2001, 2, 79-89.	1.5	37
43	Removal of snow cover inhibits spring growth of Arctic ice algae through physiological and behavioral effects. Polar Biology, 2014, 37, 471-481.	1.2	37
44	Effect of river flow, temperature, and water chemistry on proliferations of the benthic anatoxin-producing cyanobacterium <i>Phormidium</i> . Freshwater Science, 2017, 36, 63-76.	1.8	37
45	Evidence for regional climate change in the recent evolution of a high latitude pro-glacial lake. Antarctic Science, 1996, 8, 49-59.	0.9	36
46	PChemistry and stratification of Antarctic meltwater ponds I: Coastal ponds near Bratina Island, McMurdo Ice Shelf. Antarctic Science, 2006, 18, 515-524.	0.9	36
47	Shining Light on Benthic Macroalgae: Mechanisms of Complementarity in Layered Macroalgal Assemblages. PLoS ONE, 2014, 9, e114146.	2.5	35
48	The effects of entombment on water chemistry and bacterial assemblages in closed cryoconite holes on Antarctic glaciers. FEMS Microbiology Ecology, 2015, 91, fiv144.	2.7	35
49	Effect of localised nutrient enrichment on the shallow epilithic periphyton of oligotrophic Lake Taupo, New Zealand. New Zealand Journal of Marine and Freshwater Research, 1993, 27, 365-372.	2.0	34
50	EFFECT OF CURRENT VELOCITY ON THE DETACHMENT OF THALLI OF ULVA LACTUCA (CHLOROPHYTA) IN A NEW ZEALAND ESTUARY1. Journal of Phycology, 1995, 31, 875-880.	2.3	33
51	Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake. Water Resources Research, 2004, 40, .	4.2	33
52	Growth of elaborate microbial pinnacles in Lake Vanda, Antarctica. Geobiology, 2016, 14, 556-574.	2.4	33
53	Seasonal dynamics of epilithic periphyton in oligotrophic Lake Taupo, New Zealand. New Zealand Journal of Marine and Freshwater Research, 1994, 28, 1-12.	2.0	32
54	Ecological role of Phyllophora antarctica drift accumulations in coastal soft-sediment communities of McMurdo Sound, Antarctica. Polar Biology, 2004, 27, 482.	1.2	32

#	Article	IF	CITATIONS
55	Ecological processes in Antarctic inland waters: interactions between physical processes and the nitrogen cycle. Antarctic Science, 2007, 19, 205-217.	0.9	32
56	Convective gas flow development and the maximum depths achieved by helophyte vegetation in lakes. Annals of Botany, 2010, 105, 165-174.	2.9	32
57	Timescales of Growth Response of Microbial Mats to Environmental Change in an Ice-Covered Antarctic Lake. Biology, 2013, 2, 151-176.	2.8	32
58	Unmanned Aerial Vehicles (UAVs) for Monitoring Macroalgal Biodiversity: Comparison of RGB and Multispectral Imaging Sensors for Biodiversity Assessments. Remote Sensing, 2019, 11, 2332.	4.0	32
59	Modelling the contribution of benthic microbial mats to net primary production in Lake Hoare, McMurdo Dry Valleys. Antarctic Science, 2005, 17, 33-45.	0.9	31
60	Legacies of recent environmental change in the benthic communities of Lake Joyce, a perennially ice-covered Antarctic lake. Geobiology, 2011, 9, 394-410.	2.4	31
61	Optical Properties of the Mcmurdo Dry Valley Lakes, Antarctica. Antarctic Research Series, 0, , 189-203.	0.2	31
62	Stromatolite records of environmental change in perennially ice-covered Lake Joyce, McMurdo Dry Valleys, Antarctica. Biogeochemistry, 2018, 137, 73-92.	3.5	31
63	The Pyramid Trough Wetland: environmental and biological diversity in a newly created Antarctic protected area. FEMS Microbiology Ecology, 2012, 82, 356-366.	2.7	30
64	A low-cost remotely operated vehicle (ROV) with an optical positioning system for under-ice measurements and sampling. Cold Regions Science and Technology, 2018, 151, 148-155.	3.5	30
65	Photobiology of sea ice algae during initial spring growth in Kangerlussuaq, West Greenland: insights from imaging variable chlorophyll fluorescence of ice cores. Photosynthesis Research, 2012, 112, 103-115.	2.9	29
66	Growth of modern branched columnar stromatolites in Lake Joyce, Antarctica. Geobiology, 2015, 13, 373-390.	2.4	29
67	Annual growth layers as proxies of past growth conditions for benthic microbial mats in a perennially ice-covered Antarctic lake. FEMS Microbiology Ecology, 2009, 67, 279-292.	2.7	27
68	The biogeochemistry of meltwater habitats in the Darwin Glacier region (80°S), Victoria Land, Antarctica. Antarctic Science, 2010, 22, 646-661.	0.9	27
69	Spatiotemporal dynamics of Phormidium cover and anatoxin concentrations in eight New Zealand rivers with contrasting nutrient and flow regimes. Science of the Total Environment, 2018, 612, 71-80.	8.0	27
70	Epiphytes from a deep-water characean meadow in an oligotrophic New Zealand lake: species composition, biomass and photosynthesis. Freshwater Biology, 1996, 36, 297-313.	2.4	26
71	Mechanisms Underlying the Decline and Recovery of a Characean Community in Fluctuating Light in a Large Oligotrophic Lake. Australian Journal of Botany, 1999, 47, 325.	0.6	26
72	The environmental basis of ecosystem variability in Antarctica: research in the Latitudinal Gradient Project. Antarctic Science, 2010, 22, 591-602.	0.9	26

#	Article	IF	CITATIONS
73	Estimating photosynthetic activity in microbial mats in an iceâ€covered Antarctic lake using automated oxygen microelectrode profiling and variable chlorophyll fluorescence. Limnology and Oceanography, 2014, 59, 674-688.	3.1	25
74	The effects of light and temperature on photosynthate partitioning in Antarctic freshwater phytoplankton. Journal of Plankton Research, 1990, 12, 513-518.	1.8	24
75	The use of radar and optical satellite imagery combined with advanced machine learning and metaheuristic optimization techniques to detect and quantify above ground biomass of intertidal seagrass in a New Zealand estuary. International Journal of Remote Sensing, 2021, 42, 4712-4738.	2.9	23
76	Characterisation of Antarctic cyanobacteria and comparison with New Zealand strains. Hydrobiologia, 2013, 711, 139-154.	2.0	21
77	The "Dirty Ice―of the McMurdo Ice Shelf: Analogues for biological oases during the Cryogenian. Geobiology, 2018, 16, 369-377.	2.4	21
78	Summer–winter transitions in Antarctic ponds I: The physical environment. Antarctic Science, 2011, 23, 235-242.	0.9	20
79	Summer meltwater and spring sea ice primary production, light climate and nutrients in an Arctic estuary, Kangerlussuaq, west Greenland. Arctic, Antarctic, and Alpine Research, 2018, 50, .	1.1	20
80	Predicting rates of primary production in the vicinity of the Subtropical Convergence east of New Zealand Journal of Marine and Freshwater Research, 1999, 33, 443-455.	2.0	18
81	Sensitivity of freshwater macrophytes to UV radiation: relationship to depth zonation in an oligotrophic New Zealand lake. Marine and Freshwater Research, 2001, 52, 1023.	1.3	18
82	The use of pulse amplitude modulated fluorometry to determine fine-scale temporal and spatial variation of in situ photosynthetic activity within an Isoetes-dominated canopy. Aquatic Botany, 2003, 77, 1-15.	1.6	18
83	Spatial variability and depuration of tetrodotoxin in the bivalve Paphies australis from New Zealand. Toxicon: X, 2019, 2, 100008.	2.9	18
84	Detecting Multi-Decadal Changes in Seagrass Cover in Tauranga Harbour, New Zealand, Using Landsat Imagery and Boosting Ensemble Classification Techniques. ISPRS International Journal of Geo-Information, 2021, 10, 371.	2.9	18
85	External forcing by wind and turbid inflows on a deep glacial lake and implications for primary production. New Zealand Journal of Marine and Freshwater Research, 1999, 33, 311-331.	2.0	17
86	Growth dynamics of a laminated microbial mat in response to variable irradiance in an Antarctic lake. Freshwater Biology, 2016, 61, 396-410.	2.4	17
87	Is colonization of sea ice by diatoms facilitated by increased surface roughness in growing ice crystals?. Polar Biology, 2017, 40, 593-602.	1.2	17
88	Environmental Factors Associated with Deep Chlorophyll Maxima in Dry Valley Lakes, South Victoria Land, Antarctica. Arctic, Antarctic, and Alpine Research, 2006, 38, 179-189.	1.1	16
89	Distribution of Tetrodotoxin in the New Zealand Clam, Paphies australis, Established Using Immunohistochemistry and Liquid Chromatography-Tandem Quadrupole Mass Spectrometry. Toxins, 2018, 10, 282.	3.4	16
90	16S rRNA gene and 18S rRNA gene diversity in microbial mat communities in meltwater ponds on the McMurdo Ice Shelf, Antarctica. Polar Biology, 2021, 44, 823-836.	1.2	16

#	Article	IF	CITATIONS
91	Ice-based freshwater ecosystems. , 2008, , 103-118.		16
92	Inter-specific differences in photosynthetic carbon uptake, photosynthate partitioning and extracellular organic carbon release by deep-water characean algae. Freshwater Biology, 2001, 46, 453-464.	2.4	15
93	The seasonal dynamics of Spirogyra in a shallow, maritime Antarctic lake. Polar Biology, 1988, 8, 429-437.	1.2	14
94	Estimates of sulphate reduction rates in Lake Vanda, Antarctica support the proposed recent history of the lake. Antarctic Science, 2001, 13, 393-399.	0.9	14
95	Primary Production Processes in Streams of the Mcmurdo Dry Valleys, Antarctica. Antarctic Research Series, 0, , 129-140.	0.2	14
96	Decadal timescale variability in ecosystem properties in the ponds of the McMurdo Ice Shelf, southern Victoria Land, Antarctica. Antarctic Science, 2014, 26, 219-230.	0.9	14
97	Influence of environmental factors on the growth in culture of a New Zealand strain of the fast-spreading algaHydrodictyon reticulatum (water-net). Journal of Applied Phycology, 1993, 5, 437-445.	2.8	13
98	Summer-winter transitions in Antarctic ponds II: Biological responses. Antarctic Science, 2011, 23, 243-254.	0.9	13
99	Nitrogen and carbon limitation of planktonic primary production and phytoplankton–bacterioplankton coupling in ponds on the McMurdo Ice Shelf, Antarctica. Environmental Research Letters, 2013, 8, 035043.	5.2	13
100	Integration of chlorophyll <i>a</i> fluorescence and photorespirometry techniques to understand production dynamics in macroaglal communities. Journal of Phycology, 2017, 53, 476-485.	2.3	13
101	Increased mud deposition reduces stromatolite complexity. Geology, 2017, 45, 663-666.	4.4	13
102	Using Captain Scott's Discovery specimens to unlock the past: has Antarctic cyanobacterial diversity changed over the last 100 years?. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170833.	2.6	13
103	Morphological signatures of microbial activity across sediment and light microenvironments of Lake Vanda, Antarctica. Sedimentary Geology, 2017, 361, 82-92.	2.1	13
104	Energetic and Environmental Constraints on the Community Structure of Benthic Microbial Mats in Lake Fryxell, Antarctica. FEMS Microbiology Ecology, 2020, 96, .	2.7	13
105	Environmental control on the distribution of metabolic strategies of benthic microbial mats in Lake Fryxell, Antarctica. PLoS ONE, 2020, 15, e0231053.	2.5	13
106	Importance of environmental factors over habitat connectivity in shaping bacterial communities in microbial mats and bacterioplankton in an Antarctic freshwater system. FEMS Microbiology Ecology, 2021, 97, .	2.7	13
107	Invasion of water net, <i>Hydrodictyon reticulatum</i> : The surprising success of an aquatic plant new to our flora. New Zealand Journal of Marine and Freshwater Research, 1991, 25, 227-229.	2.0	12
108	Photosynthetic parameters in water masses in the vicinity of the Chatham rise, south pacific ocean, during late summer. New Zealand Journal of Marine and Freshwater Research, 1997, 31, 25-38.	2.0	12

#	Article	IF	CITATIONS
109	<i>Diacyclops</i> (Copepoda: Cyclopoida) in Continental Antarctica, including three new species. Antarctic Science, 2014, 26, 250-260.	0.9	12
110	Fineâ€scale cryogenic sampling of planktonic microbial communities: Application to toxic cyanobacterial blooms. Limnology and Oceanography: Methods, 2016, 14, 600-609.	2.0	12
111	Effects of Fine Sediment on Seagrass Meadows: A Case Study of Zostera muelleri in PÄuatahanui Inlet, New Zealand. Journal of Marine Science and Engineering, 2020, 8, 645.	2.6	12
112	Metabolic Capacity of the Antarctic Cyanobacterium Phormidium pseudopriestleyi That Sustains Oxygenic Photosynthesis in the Presence of Hydrogen Sulfide. Genes, 2021, 12, 426.	2.4	12
113	Microbial population responses in three stratified Antarctic meltwater ponds during the autumn freeze. Antarctic Science, 2012, 24, 571-588.	0.9	11
114	Intracellular, environmental and biotic interactions influence recruitment of benthicMicrocystis(Cyanophyceae) in a shallow eutrophic lake. Journal of Plankton Research, 2016, 38, 1289-1301.	1.8	11
115	Molecular and Pigment Analyses Provide Comparative Results When Reconstructing Historic Cyanobacterial Abundances from Lake Sediment Cores. Microorganisms, 2022, 10, 279.	3.6	11
116	Exploring Spatial Heterogeneity of Antarctic Sea Ice Algae Using an Autonomous Underwater Vehicle Mounted Irradiance Sensor. Frontiers in Earth Science, 2019, 7, .	1.8	10
117	Microbial Diversity of Pinnacle and Conical Microbial Mats in the Perennially Ice-Covered Lake Untersee, East Antarctica. Frontiers in Microbiology, 2020, 11, 607251.	3.5	10
118	Photosynthate partitioning in Antarctic freshwater phytoplankton: in situ incubations. Freshwater Biology, 1990, 24, 193-200.	2.4	9
119	Fine-Scale Sea Ice Structure Characterized Using Underwater Acoustic Methods. Remote Sensing, 2016, 8, 821.	4.0	9
120	100 years on: a re-evaluation of the first discovery of microfauna from Ross Island, Antarctica. Antarctic Science, 2018, 30, 209-219.	0.9	9
121	Saline lakes and ponds in the McMurdo Dry Valleys: ecological analogs to martian paleolake environments. , 2010, , 160-194.		8
122	The effects of velocity and nitrate on <i>Phormidium</i> accrual cycles: a stream mesocosm experiment. Freshwater Science, 2018, 37, 496-509.	1.8	8
123	Bacteriohopanepolyols across environmental gradients in Lake Vanda, Antarctica. Geobiology, 2019, 17, 308-319.	2.4	8
124	Complex Structure but Simple Function in Microbial Mats from Antarctic Lakes. Advances in Environmental Microbiology, 2019, , 91-120.	0.3	8
125	Seasonal and Spatial Variations in Bacterial Communities From Tetrodotoxin-Bearing and Non-tetrodotoxin-Bearing Clams. Frontiers in Microbiology, 2020, 11, 1860.	3.5	8
126	Differential UVBâ€sensitivities of five New Zealand freshwater zooplankton species. New Zealand Journal of Marine and Freshwater Research, 2001, 35, 635-645.	2.0	7

#	Article	IF	CITATIONS
127	The Status of Silverlip Pearl Oyster <i>Pinctada maxima</i> (Jameson) (Mollusca, Pteridae) in the Solomon Islands After A 15-Year Export Ban. Journal of Shellfish Research, 2011, 30, 255-260.	0.9	7
128	Characterisation of a deep-water moss from the perennially ice-covered Lake Vanda, Antarctica. Polar Biology, 2017, 40, 2063-2076.	1.2	7
129	In a PICL: The sedimentary deposits and facies of perennially iceâ€covered lakes. Sedimentology, 2019, 66, 917-939.	3.1	7
130	Environmental controls on bacteriohopanepolyol profiles of benthic microbial mats from Lake Fryxell, Antarctica. Geobiology, 2019, 17, 551-563.	2.4	7
131	A Microencapsulation Method for Delivering Tetrodotoxin to Bivalves to Investigate Uptake and Accumulation. Marine Drugs, 2021, 19, 33.	4.6	7
132	Variability in microcystin quotas during a Microcystis bloom in a eutrophic lake. PLoS ONE, 2021, 16, e0254967.	2.5	7
133	Growth and reproductive phenology of the kelpLessonia variegatain central New Zealand. New Zealand Journal of Marine and Freshwater Research, 2006, 40, 273-284.	2.0	6
134	Summer–winter transitions in Antarctic ponds: III. Chemical changes. Antarctic Science, 2012, 24, 121-130.	0.9	6
135	Environmental drivers that influence microalgal species in meltwater pools on the McMurdo Ice Shelf, Antarctica. Polar Biology, 2020, 43, 467-482.	1.2	6
136	Reach- and mat-scale differences in <i>Microcoleus autumnalis</i> (cyanobacterium) accrual along velocity and nitrate gradients in three New Zealand rivers. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 401-412.	1.4	5
137	Fine sediment effects on seagrasses: A global review, quantitative synthesis and multi-stressor model. Marine Environmental Research, 2021, 171, 105480.	2.5	5
138	Interaction of substrate muddiness and low irradiance on seagrass: A mesocosm study of Zostera muelleri. Aquatic Botany, 2021, 175, 103435.	1.6	5
139	Geochemically Defined Space-for-Time Transects Successfully Capture Microbial Dynamics Along Lacustrine Chronosequences in a Polar Desert. Frontiers in Microbiology, 2021, 12, 783767.	3.5	5
140	Underwater light profiles in some New Zealand lakes: A comparison of logâ€ i inear and Weibull models. New Zealand Journal of Marine and Freshwater Research, 1996, 30, 477-484.	2.0	4
141	Upwelling Irradiance below Sea Ice—PAR Intensities and Spectral Distributions. Journal of Marine Science and Engineering, 2021, 9, 830.	2.6	4
142	Photobiological Effects on Ice Algae of a Rapid Whole-Fjord Loss of Snow Cover during Spring Growth in Kangerlussuaq, a West Greenland Fjord. Journal of Marine Science and Engineering, 2021, 9, 814.	2.6	4
143	The thermal structure of the anoxic trough in Lake Untersee, Antarctica. Antarctic Science, 2018, 30, 333-344.	0.9	3
144	In Situ Collection and Preservation of Intact Microcystis Colonies to Assess Population Diversity and Microcystin Ouotas. Toxins, 2019, 11, 435.	3.4	2

#	Article	IF	CITATIONS
145	Sexual reproduction of seagrass <i>Zostera muelleri</i> in Aotearoa New Zealand: are we missing a restoration opportunity?. New Zealand Journal of Marine and Freshwater Research, 2023, 57, 447-453.	2.0	2
146	First record of <i>Chaetomorpha ligustica</i> (Cladophoraceae, Cladophorales) smothering the seagrass <i>Zostera muelleri</i> in a New Zealand estuary. New Zealand Journal of Marine and Freshwater Research, 2023, 57, 454-465.	2.0	2
147	Lipid Biomarkers From Microbial Mats on the McMurdo Ice Shelf, Antarctica: Signatures for Life in the Cryosphere. Frontiers in Microbiology, 0, 13, .	3.5	2
148	Towards an Environmental Classification of Lentic Aquatic Ecosystems in the McMurdo Dry Valleys, Antarctica. Environmental Management, 2021, 67, 600-622.	2.7	1
149	Reply to comment by K. Gajewski on "Abrupt environmental change in Canada's northernmost lakeâ€ . Geophysical Research Letters, 2008, 35, .	4.0	0
150	Morphological diversity of benthic cyanobacterial assemblages in meltwater ponds along environmental gradients in the McMurdo Sound region, Antarctica. Anais Da Academia Brasileira De Ciencias, 2022, 94, e20210814.	0.8	0