
Petr MikeÅ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8363901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physical principles of electrospinning (Electrospinning as a nano-scale technology of the twenty-first) Tj ETQq1	1 0.784314 2.0	rgBT /Over
2	Effective AC needleless and collectorless electrospinning for yarn production. Physical Chemistry Chemical Physics, 2014, 16, 26816-26822.	2.8	74
3	Elastic threeâ€dimensional poly (ε aprolactone) nanofibre scaffold enhances migration, proliferation and osteogenic differentiation of mesenchymal stem cells. Cell Proliferation, 2013, 46, 23-37.	5.3	73
4	Comprehensive assessment of electrospun scaffolds hemocompatibility. Materials Science and Engineering C, 2018, 82, 330-335.	7.3	48
5	The effect of ethylene oxide sterilization on electrospun vascular grafts made from biodegradable polyesters. Materials Science and Engineering C, 2018, 92, 132-142.	7.3	45
6	Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning. Scientific Reports, 2019, 9, 1801.	3.3	36
7	The combination of meltblown and electrospinning for bone tissue engineering. Materials Letters, 2015, 143, 172-176.	2.6	35
8	Design of Polycaprolactone Vascular Grafts. Journal of Industrial Textiles, 2016, 45, 813-833.	2.4	32
9	Electrospun vascular grafts fabricated from poly(<i>L</i> -lactide-co- <i>ε</i> -caprolactone) used as a bypass for the rabbit carotid artery. Biomedical Materials (Bristol), 2018, 13, 065009.	3.3	13
10	Comparison and characterization of different polyester nano/micro fibres for use in tissue engineering applications. Journal of Industrial Textiles, 2021, 50, 870-890.	2.4	13
11	Novel lipophosphonoxin-loaded polycaprolactone electrospun nanofiber dressing reduces Staphylococcus aureus induced wound infection in mice. Scientific Reports, 2021, 11, 17688.	3.3	13
12	The Mass Production of Lignin Fibres by Means of Needleless Electrospinning. Journal of Polymers and the Environment, 2021, 29, 2164-2173.	5.0	12
13	Nanofibrous Scaffolds for Skin Tissue Engineering and Wound Healing Based on Synthetic Polymers. , 0, , .		11
14	Ag-AgCl Nanoparticles Fixation on Electrospun PVA Fibres: Technological Concept and Progress. Scientific Reports, 2019, 9, 15520.	3.3	10
15	In vitro and in vivo testing of nanofibrous membranes doped with alaptide and L-arginine for wound treatment. Biomedical Materials (Bristol), 2020, 15, 065023.	3.3	10
16	The assessment of electrospun scaffolds fabricated from polycaprolactone with the addition of L-arginine. Biomedical Physics and Engineering Express, 2020, 6, 025012.	1.2	5
17	Nanofibrous Scaffolds for Skin Tissue Engineering and Wound Healing Based on Nature-Derived Polymers. , 0, , .		2
18	The impact of the lamination pressure on the properties of electrospinned nanofibrous films. European Journal of Pharmaceutical Sciences, 2022, 173, 106170.	4.0	2

#	Article	IF	CITATIONS
19	A novel approach to studying the kinetics of release of Alaptide from Poly-ε-caprolactone nanofibers. Journal of Drug Delivery Science and Technology, 2021, 63, 102492.	3.0	1