Andrzej Miniewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8363888/publications.pdf

Version: 2024-02-01

228 papers

3,066 citations

32 h-index 253896 43 g-index

230 all docs

230 docs citations

times ranked

230

2258 citing authors

#	Article	IF	CITATIONS
1	High gain of light in photoconducting polymer–nematic liquid crystal hybrid structures. Optics Communications, 2001, 187, 257-261.	1.0	70
2	Refractive-index anisotropy and optical dispersion in films of deoxyribonucleic acid. Journal of Applied Polymer Science, 2007, 105, 236-245.	1.3	70
3	Optical phase conjugation in dye-doped nematic liquid crystal. Optics Communications, 1998, 149, 89-95.	1.0	68
4	Optical amplification with high gain in hybrid-polymer–liquid-crystal structures. Applied Physics Letters, 1999, 74, 2924-2926.	1.5	63
5	Polarization Dependence of Holographic Grating Recording in Azobenzene-Functionalized Polymers Monitored by Visible and Infrared Light. Journal of Physical Chemistry B, 2010, 114, 9751-9760.	1.2	61
6	Photochromic and nonlinear optical properties of azo-functionalized POSS nanoparticles dispersed in nematic liquid crystals. Journal of Materials Chemistry C, 2014, 2, 432-440.	2.7	61
7	On the electro-optic properties of single crystals of sodium, potassium and rubidium acid phthalates. Advanced Materials for Optics and Electronics, 1993, 2, 157-163.	0.6	60
8	[NH2(C2H4)2O]MX5: a new family of morpholinium nonlinear optical materials among halogenoantimonate(iii) and halogenobismuthate(iii) compounds. Structural characterization, dielectric and piezoelectric properties. Dalton Transactions, 2012, 41, 7285.	1.6	59
9	Amplified spontaneous emission in the spiropyran-biopolymer based system. Applied Physics Letters, 2009, 94, .	1.5	58
10	The role of polymers in random lasing. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 951-974.	2.4	54
11	Synthesis, Characterization, and Study of Photoinduced Optical Anisotropy in Polyimides Containing Side Azobenzene Units. Journal of Physical Chemistry A, 2009, 113, 8765-8780.	1.1	53
12	Analysis of the Kinetics of Diffraction Efficiency during the Holographic Grating Recording in Azobenzene Functionalized Polymers. Journal of Physical Chemistry B, 2007, 111, 1536-1544.	1.2	51
13	Deoxyribonucleic acid-based photochromic material for fast dynamic holography. Applied Physics Letters, 2007, 91, 041118.	1.5	48
14	Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system. Applied Physics Letters, 2010, 96, .	1.5	48
15	Single- and Two-Photon Excited Fluorescence in Organic Nonlinear Optical Single Crystal 3- $(1,1$ -Dicyanoethenyl)-1-phenyl-4,5-dihydro- 1 < i >H< i >-pyrazole. Journal of Physical Chemistry A, 2011, 115, 10689-10697.	1.1	46
16	Biopolymer based system doped with nonlinear optical dye as a medium for amplified spontaneous emission and lasing. Applied Physics Letters, 2011, 99, .	1.5	46
17	Dye-doped liquid crystal composite for real-time holography. Journal of Optics, 1996, 5, 799-809.	0.5	45
18	Liquid crystals for photonic applications. Optical Materials, 2003, 21, 605-610.	1.7	39

#	Article	IF	Citations
19	Kinetics of thermal ⟨i⟩cis⟨ i⟩–⟨i⟩trans⟨ i⟩ isomerization in a phototropic azobenzene-based single-component liquid crystal in its nematic and isotropic phases. Physical Chemistry Chemical Physics, 2018, 20, 2904-2913.	1.3	38
20	Photochromic dye semi-intercalation into DNA-based polymeric matrix: Computer modeling and experiment. Chemical Physics Letters, 2010, 484, 321-323.	1.2	37
21	Marangoni effect visualized in two-dimensions Optical tweezers for gas bubbles. Scientific Reports, 2016, 6, 34787.	1.6	37
22	Epoxy resin cured with diamine bearing azobenzene group. Polymer, 2004, 45, 2483-2493.	1.8	36
23	Surface roughness induced random lasing in bio-polymeric dye doped film. Chemical Physics Letters, 2013, 576, 31-34.	1.2	36
24	Synthesis, optical and nonlinear optical properties of new pyrazoline derivatives. Dyes and Pigments, 2014, 102, 63-70.	2.0	36
25	Mechanism of optical recording in doped liquid crystals. Advanced Materials for Optics and Electronics, 1996, 6, 219-224.	0.6	35
26	On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism. Physical Chemistry Chemical Physics, 2017, 19, 18695-18703.	1.3	35
27	Dynamic charge-carrier-mobility-mediated holography in thin layers of photoconducting polymers. Applied Physics Letters, 2002, 81, 3705-3707.	1.5	34
28	On the Inscription of Period and Half-Period Surface Relief Gratings in Azobenzene-Functionalized Polymers. Journal of Physical Chemistry B, 2008, 112, 4526-4535.	1.2	34
29	Biomaterials in light amplification. Journal of Optics (United Kingdom), 2017, 19, 033003.	1.0	34
30	Self-induced nonlinear Zernike filter realized with optically addressed liquid crystal spatial light modulator. Journal of Applied Physics, 2002, 92, 5635-5641.	1.1	33
31	Efficient holographic recording in novel azo-containing polymer. Optical Materials, 2007, 29, 1756-1762.	1.7	32
32	Study of the amplified spontaneous emission in a dye-doped biopolymer-based material. Journal Physics D: Applied Physics, 2009, 42, 085101.	1.3	32
33	Light Amplification in Derivatives of Pyrazoline-Based Systems. Journal of Physical Chemistry C, 2014, 118, 8102-8110.	1.5	32
34	Photoinduced Birefringence in PMMA Polymer Doped with Photoisomerizable Pyrazoline Derivative. Journal of Physical Chemistry C, 2015, 119, 10007-10014.	1.5	32
35	Phase transitions in ferroelectric nonachlorodiantimonate [(CH 3)3NH]3Sb2Cl9 studied by calorimetric and dielectric methods. Journal De Physique, 1989, 50, 1483-1491.	1.8	32
36	Coherent–incoherent random lasing based on nano-rubbing induced cavities. Laser Physics Letters, 2014, 11, 045801.	0.6	31

#	Article	IF	CITATIONS
37	Amplified spontaneous emission in polymethyl methacrylate doped with 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP). Chemical Physics Letters, 2011, 512, 247-250.	1.2	30
38	Chromophore concentration effect on holographic grating formation efficiency in novel azobenzeneâ€functionalized polymers. Polymer Engineering and Science, 2008, 48, 1755-1767.	1.5	29
39	Dielectric and pyroelectric properties of (CH3NH3)3Sb2Br9. Ferroelectrics, 1986, 70, 145-152.	0.3	28
40	Observation of high gain in a liquid-crystal panel with photoconducting polymeric layers. Applied Optics, 1998, 37, 6871.	2.1	27
41	Optical image correlator realized with a hybrid liquid-crystal-photoconducting polymer structure. Optics Letters, 1998, 23, 1769.	1.7	27
42	Comparative studies of newly synthesized azo-dyes bearing poly(esterimide)s with their poly(etherimide) analogues. Light-induced optical anisotropy. Optical Materials, 2008, 31, 405-411.	1.7	27
43	Cycloaliphatic–aromatic polyimides based on diamines with azobenzene unit. European Polymer Journal, 2006, 42, 2859-2871.	2.6	26
44	Amplified spontaneous emission of 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole molecule embedded in various polymer matrices. Optical Materials, 2012, 34, 1725-1728.	1.7	25
45	Investigations of organic–inorganic hybrids based on homopiperidinium cation with haloantimonates(<scp>iii</scp>) and halobismuthates(<scp>iii</scp>). Crystal structures, reversible phase transitions, semiconducting and molecular dynamic properties. Dalton Transactions, 2018, 47, 13507-13522.	1.6	25
46	Pyroelectric properties of a ferroelectric single crystal [NH2(CH3)2]3Sb2Cl9 (DMACA). Solid State Communications, 1987, 63, 933-936.	0.9	24
47	Liquid crystals as materials for real-time holographic optical devices. Journal of Optics, 1998, 7, 179-189.	0.5	24
48	Kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores: Experiments and Monte Carlo simulations. Journal of Chemical Physics, 2003, 119, 6789-6801.	1.2	24
49	Photoinduced Holographic Gratings in Azobenzene-Functionalized Poly(amideimide)s. Polymer Journal, 2007, 39, 659-669.	1.3	24
50	Holographic grating recording in large area photoconducting liquid crystal panels. Synthetic Metals, 2000, 109, 189-193.	2.1	22
51	Photo-Physical Transformations in Pyrazoline Derivative Based Systems. Journal of Physical Chemistry C, 2016, 120, 14813-14819.	1.5	22
52	On optical phase conjugation in polystyrene films containing the azobenzene dye Disperse Red 1. Journal of Optics, 1998, 7, 709-721.	0.5	21
53	Methylene blue sensitized poly(methyl methacrylate) matrix: a novel holographic material. Applied Optics, 1995, 34, 5175.	2.1	20
54	Influence of surfactant on dynamics of photoinduced motions and light emission of a dye-doped deoxyribonucleic acid. Optical Materials, 2013, 35, 2389-2393.	1.7	20

#	Article	IF	CITATIONS
55	Raman scattering in ferroelectric [NH(CH3)3]3Sb2Cl9 single crystals. Journal of Raman Spectroscopy, 1989, 20, 381-389.	1.2	19
56	On the efficient mixed amplitude and phase grating recording in vacuum deposited Disperse Red 1. Thin Solid Films, 2004, 461, 316-324.	0.8	19
57	Amplified spontaneous emission of Rhodamine 6G embedded in pure deoxyribonucleic acid. Applied Physics Letters, 2012, 101, .	1.5	19
58	Photo-induced birefringence in a nematic liquid crystal mixture doped with light-switchable mesogenic azobenzene derivatives. Journal of Molecular Liquids, 2012, 168, 21-27.	2.3	19
59	Influence of electric field on photoluminescence of lanthanide-doped nematic liquid crystal. Journal of Luminescence, 2007, 124, 265-272.	1.5	18
60	Biopolymer-based material used in optical image correlation. Applied Optics, 2008, 47, 1902.	2.1	18
61	Raman scattering in ferroelectric (CH3NH3)3Bi2Br9 single crystals. Journal of Raman Spectroscopy, 1994, 25, 371-375.	1.2	17
62	Two-photon absorption resonance in 3-(1,1-dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole (DCNP). Chemical Physics Letters, 1998, 287, 17-21.	1.2	17
63	Generic stochastic Monte Carlo model of the photoinduced mass transport in azo-polymers and fine structure of Surface Relief Gratings. Europhysics Letters, 2014, 105, 26002.	0.7	17
64	First Principle Calculations of the Electronic and Vibrational Properties of the 3-(1,1-Dicyanoethenyl)-1-phenyl-4,5-dihydro-1H-pyrazole Molecule. Journal of Physical Chemistry A, 2015, 119, 1347-1358.	1.1	17
65	Second harmonic generation in nonlinear optical crystals formed from propellane-type molecules. Journal of Materials Chemistry C, 2019, 7, 1255-1262.	2.7	17
66	Study of elastic properties of sodium, potassium and rubidium acid phthalates by brillouin scattering. Journal of Physics and Chemistry of Solids, 1992, 53, 511-520.	1.9	16
67	Polarisation-sensitive holographic recording in polyimide-containing azo-dye. Synthetic Metals, 2002, 127, 89-93.	2.1	16
68	On the real-time reconstruction of digital holograms displayed on photosensitive liquid crystal systems. Optical Materials, 2006, 28, 1389-1397.	1.7	16
69	Crystal structure and characterization of a novel acentric imidazolium analog <mml:math altimg="si14.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo stretchy="false">[<mml:msub><mml:mrow><mml:mtext>C</mml:mtext></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:mo></mml:mrow><td>1.2 <mml:mn:< td=""><td>16 >3</td></mml:mn:<></td></mml:math>	1.2 <mml:mn:< td=""><td>16 >3</td></mml:mn:<>	16 >3
70	Chemical Physics Letters, 2011, 503, 134-136. Whirl-enhanced continuous wave laser trapping of particles. Physical Chemistry Chemical Physics, 2015, 17, 1077-1083.	1.3	16
71	A multiaxial electrical switching in a one-dimensional organic–inorganic (pyrrolidinium) ₂ Cd ₂ I ₆ ferroelectric and photoluminescent crystal. Journal of Materials Chemistry C, 2021, 9, 7665-7676.	2.7	16
72	Poling kinetics and second order NLO properties of DCNP doped PMMA based thin film. Optical Materials, 2013, 36, 69-74.	1.7	15

#	Article	IF	Citations
73	Light sensitive polymer obtained by dispersion of azo-functionalized POSS nanoparticles. Chemical Physics, 2015, 456, 65-72.	0.9	15
74	Synthesis, Characterization, and Optical Properties of Organic–Inorganic Hybrid Layered Materials: A Solvent-Free Ligand-Controlled Dimensionality Approach Based on Metal Sulfates and Aromatic Diamines. Crystal Growth and Design, 2018, 18, 5029-5037.	1.4	15
75	Raman studies of structural phase transition in [NH2(CH3)2]3Sb2Cl9 (DMACA). Journal of Raman Spectroscopy, 1991, 22, 435-443.	1.2	14
76	Enhanced Photorefractive Effect in Hybrid Conducting Polymer - Liquid Crystal Structures. Molecular Crystals and Liquid Crystals, 1998, 322, 9-20.	0.3	14
77	Electro-optic phenomena in nematic liquid crystals studied experimentally and by Monte-Carlo simulations. Journal of Applied Physics, 2001, 90, 1836-1842.	1.1	14
78	MONTE CARLO SIMULATIONS OF TEMPERATURE DEPENDENCE OF THE KINETICS OF DIFFRACTION GRATINGS FORMATION IN A POLYMER MATRIX CONTAINING AZOBENZENE CHROMOPHORES. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 481-489.	1.1	14
79	Surface Plasmon Polariton Excitation in Metallic Layer Via Surface Relief Gratings in Photoactive Polymer Studied by the Finite-Difference Time-Domain Method. Plasmonics, 2011, 6, 541-546.	1.8	14
80	Spontaneous crystalization and aggregation of DCNP pyrazoline-based organic dye as a way to tailor random lasers. Journal Physics D: Applied Physics, 2015, 48, 195101.	1.3	14
81	Pyroelectric properties and phase transition in TRIS (dimethylammonium) nonabromodiantimonate (III). Solid State Communications, 1988, 67, 1079-1083.	0.9	13
82	Studies of phase transitions in new ferroelectric crystal [nh(ch3)3]3sb2cl9. Ferroelectrics, 1989, 94, 323-328.	0.3	13
83	Monte–Carlo simulations of refractive index changes in nematic liquid crystal upon spatially nonuniform illumination. Optics Communications, 2000, 182, 249-254.	1.0	12
84	New polyamides with azo-chromophore groups. Thin Solid Films, 2004, 453-454, 367-371.	0.8	12
85	Observation of second-harmonic generation in an oriented glassy nematic phase of a <i>closo</i> -decaborane derivative. Journal of Applied Physics, 2007, 102, .	1.1	12
86	On the origin of fluorescence emission in optically non-linear DCNP crystals. Physical Chemistry Chemical Physics, 2014, 16, 26887-26892.	1.3	12
87	Enlargement of the organic solid-state DFB laser wavelength tuning range by the use of two complementary luminescent dyes doped into the host matrix. Physical Chemistry Chemical Physics, 2017, 19, 18068-18075.	1.3	12
88	Elastic and piezoelectric properties of carbazole-trinitrobenzene crystals as studied by thermally induced electrical oscillations. Chemical Physics Letters, 1980, 76, 442-447.	1,2	11
89	Raman scattering in ferroelectric [NH2(CH3)2]3Sb2Cl9(DMACA). Ferroelectrics, 1990, 107, 183-188.	0.3	11
90	Nematic Liquid Crystals as Media for Real-Time Holography. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1999, 35, 317-325.	1.6	11

#	Article	IF	Citations
91	Surface-assisted optical storage in a nematic liquid crystal cell via photoinduced charge-density modulation. Organic Electronics, 2001, 2, 155-163.	1.4	11
92	Photorefractive-Like All-Optical Switching in Nematic-Photoconducting Polymer Liquid Crystal Cell. Molecular Crystals and Liquid Crystals, 2008, 489, 119/[445]-134/[460].	0.4	11
93	Investigation of enhancement of photoinduced reorientation of liquid-crystal molecules in the presence of azo-dye and gold nanoparticles. Europhysics Letters, 2009, 88, 56003.	0.7	11
94	Environmentâ€Sensitive Behavior of DCNP in Solvents with Different Viscosity, Polarity and Proticity. ChemPhysChem, 2015, 16, 3500-3510.	1.0	11
95	Photoconduction in Single Crystals of the Thianthrene-Tetracyanobenzene 1:1 Adduct. Molecular Crystals and Liquid Crystals, 1984, 111, 199-214.	0.9	10
96	On the Spectroscopic and Nonlinear Optical Properties OF 3-(1,1-Dicyanoethenyl)-1-Phenyl-4,5-Dihydro-1H-Pyrazole (DCNP). Molecular Crystals and Liquid Crystals, 1994, 253, 41-50.	0.3	10
97	Optical phase conjugation in azo-dye doped chiral liquid crystal. Applied Physics Letters, 2012, 101, .	1.5	10
98	Photonic vortices induced in a single-component phototropic liquid crystal. Physical Chemistry Chemical Physics, 2016, 18, 3832-3837.	1.3	10
99	Thermocapillary Marangoni Flows in Azopolymers. Materials, 2020, 13, 2464.	1.3	10
100	Thermal pulse induced dynamic pyroelectric response and piezoelectric oscillations in polyvinylidene fluoride. Ferroelectrics, 1983, 48, 225-237.	0.3	9
101	Optical properties of deoxyribonucleic acid (DNA) polymer host. , 2006, 6401, 21.		9
102	Pulsed laser induced birefringence switching in a biopolymer matrix containing azo-dye molecules. Optical Materials, 2011, 33, 1382-1386.	1.7	9
103	Refractive index and surface relief grating formation in DNA based dye-doped films. Macromolecular Research, 2013, 21, 331-337.	1.0	9
104	Brillouin scattering studies of ferroelectric tris(dimethylammonium) nonabromodiantimonate (III). Solid State Communications, 1989, 71, 143-147.	0.9	8
105	Ferroelasticity of [NH2(CH3)2]3sb2Br9 (DMABA). Ferroelectrics, 1990, 106, 249-254.	0.3	8
106	Far-infrared reflectivity and Raman study in the ferroelectric-ferroelastic crystal of tris(dimethylammonium) nonabromodiantimonate. Journal of Raman Spectroscopy, 1992, 23, 347-356.	1.2	8
107	Far-infrared reflectivity spectra of two ferroelectric crystals (CH3NH3)5Bi2Cl11and (CH3NH3)5Bi2Br11. Ferroelectrics, 1993, 145, 109-118.	0.3	8
108	Electro-Optic Investigations in Some Molecular-Ionic Crystals. Molecular Crystals and Liquid Crystals, 1993, 229, 13-18.	0.3	8

#	Article	IF	Citations
109	Monte Carlo simulation of electric-field-induced spatial gratings in nematic liquid crystals. Journal of Optics, 1997, 6, 589-598.	0.5	8
110	Incoherent-to-coherent image converter based on hybrid liquid crystal — photoconducting polymer structure. Synthetic Metals, 2000, 109, 105-108.	2.1	8
111	New Azobenzene Chromophores as Monomers for Synthesis of Polyesters. Polymer Journal, 2003, 35, 851-858.	1.3	8
112	Grating translation technique as a tool for monitoring phase shifts during holographic recording in azo-polymers. Journal of Applied Physics, 2010, 108, 083540.	1.1	8
113	Electrooptical properties of hybrid liquid crystalline systems containing CdSe quantum dots. Applied Physics Letters, 2014, 105, 231903.	1.5	8
114	Raman and Brillouin spectra and phase transitions in ferroeleciric [(CH3)3NH]3Sb2Cl9(TMACA). Ferroelectrics, 1988, 80, 153-156.	0.3	7
115	Pyroelectric properties of a novel uniaxial ferroelectric crystal (CH3NH3)5Bi2Br11. Ferroelectrics, 1991, 115, 119-127.	0.3	7
116	Fluorescence and SHG in organic nanocrystals of DCNP. Proceedings of SPIE, 2012, , .	0.8	7
117	Holographic grating inscription in DR1: DNA-CTMA thin films: the puzzle of time scales. Open Chemistry, 2014, 12, 886-892.	1.0	7
118	Distributed Feedback Lasing in Amorphous Polymers with Covalently Bonded Fluorescent Dyes: The Influence of Photoisomerization Process. Macromolecules, 2017, 50, 6164-6173.	2.2	7
119	Low-frequency Raman and infrared scatterings in single crystals of sodium acid phthalate, NaC8H5O4 \hat{A} + \hat{A} + \hat{A} + \hat{A} + \hat{A} + \hat{A} + \hat{A} -	1.2	6
120	Influence of poly(amide-imide)s structures on holographic grating recording., 2005,,.		6
121	Temperature Dependence of the Kinetics of Diffraction Gratings Formation in a Polymer Matrix Containing Azobenzene Chromophores: Monte Carlo Simulations and Experiment. Molecular Crystals and Liquid Crystals, 2005, 426, 243-252.	0.4	6
122	Holographic grating recording in azobenzene functionalized polymers. Open Chemistry, 2006, 4, 266-284.	1.0	6
123	Dynamics of photoinduced motions in azobenzene grafted polybutadienes. Optical Materials, 2011, 33, 1398-1404.	1.7	6
124	Laser light-induced molecular reorientation in 90° twisted nematic liquid crystal: Classic approach, Monte Carlo modeling and experiment. Optical Materials, 2012, 34, 1697-1703.	1.7	6
125	Crystal structures and related to noncentrosymmetricity properties of 4-aminomorpholinium salts. Chemical Physics Letters, 2016, 665, 31-35.	1.2	6
126	Phase transition in solid 2,2,4,4-tetramethyl- pentan-3-ol (TMP). Journal of Molecular Structure, 1990, 240, 39-46.	1.8	5

#	Article	IF	CITATIONS
127	Calorimetric study of the phase transitions in tris (dimethylammonium) nonabromodiantimonate (iii) and tris(dimethylammonium) nonachlorodiantimonate (III). Ferroelectrics, 1992, 125, 39-44.	0.3	5
128	Far-infrared reflectivity study in optically non-linear crystal of potassium pentaborate. Spectrochimica Acta Part A: Molecular Spectroscopy, 1993, 49, 387-395.	0.1	5
129	Photoconducting polymer–liquid crystal structure studied by electroreflectance. Journal of Applied Physics, 2004, 95, 1141-1147.	1.1	5
130	Kinetics of grating inscription in DR1:DNA-CTMA thin film: experiment and semi-intercalation approach. Proceedings of SPIE, 2012, , .	0.8	5
131	On the nature of the low temperature phase transition in (ch3nh3)3bi2i9 studied by pyroelectric method. Ferroelectrics, 1990, 110, 261-269.	0.3	5
132	Structure of the 1:1 molecular complex of durene with 1,2,4,5-tetracyanobenzene. Acta Crystallographica Section C: Crystal Structure Communications, 1989, 45, 1372-1376.	0.4	4
133	Dye-Doped Liquid Crystal for Real-Time Holography. , 1997, , 323-337.		4
134	Monte Carlo simulation of the Fréedericksz transition in nematic liquid crystals. Advanced Materials for Optics and Electronics, 1997, 7, 71-77.	0.6	4
135	Holographic grating formation mechanism in dye-doped nematic liquid crystal thin layer under dc electric field., 2000, 4147, 330.		4
136	PHOTOREFRACTIVE EFFECTS IN PURE MULTICOMPONENT ISOTHIOCYANATE LIQUID CRYSTALS UNDER LOW POWER ILLUMINATION. Molecular Crystals and Liquid Crystals, 2004, 413, 443-450.	0.4	4
137	Optically induced gratings in azo-functionalized polymers studied by a moving grating technique. , 2005, , .		4
138	Cubic nonlinear optical effects in deoxyribonucleic acid (DNA) based materials containing chromophores. Proceedings of SPIE, 2007, , .	0.8	4
139	Grafted polybutadiene for fast retrieval of optical information. Journal of Applied Physics, 2009, 106, 053108.	1.1	4
140	The IR temperature studies of phase transition of 4-aminopyridinium-hydrogen maleate-maleic acid: Isotopic effect and nonlinear optical properties. Vibrational Spectroscopy, 2013, 66, 93-103.	1.2	4
141	Organic Nanocrystal Fabrication Using the Process of Resonant Second-Harmonic Generation of Light. ACS Omega, 2021, 6, 10547-10556.	1.6	4
142	First-order hyperpolarizabilities of propellanes: elucidating structure–property relationships. Physical Chemistry Chemical Physics, 2022, 24, 13534-13541.	1.3	4
143	Steady-State Electroluminescence in Perylene-Doped Anthracene Crystals. Molecular Crystals and Liquid Crystals, 1981, 72, 113-118.	0.9	3
144	Brillouin scattering study of elastic properties in ferroelectric (CH3NH3)5Bi2Br11crystal. Ferroelectrics, 1993, 146, 37-43.	0.3	3

#	Article	IF	Citations
145	Electro-optic coefficients of ferroelectric PMACB and PMABB crystals. Ferroelectrics, 1995, 165, 241-248.	0.3	3
146	Influence of nematic liquid crystal with dye and cell construction parameters on dynamic holographic grating formation., 2000, 4147, 335.		3
147	Photoconducting Polymer - Nematic Liquid Crystal Hybrid Structures the Promising Choice for Optical Information Processing. Molecular Crystals and Liquid Crystals, 2001, 361, 135-142.	0.3	3
148	Holographic movies projected onto nematic LC cells. , 2002, , .		3
149	Diffraction efficiency in dye-doped LC cells under low-frequency AC voltage. , 2002, 4759, 298.		3
150	Investigations of Polymers with Chromophore Units I. Synthesis and Properties of New Poly(ester-imide)s from 2,4-Dihydroxy-4'-nitroazobenzene. Polymer Journal, 2003, 35, 749-756.	1.3	3
151	Kinetics of Diffraction Gratings in a Polymer Matrix Containing Azobenzene Chromophores: Experiment and Monte Carlo Simulations. Molecular Crystals and Liquid Crystals, 2004, 416, 113-126.	0.4	3
152	Video rate holography in a liquid crystal-photoconducting polymer system. , 2004, , .		3
153	Experimental and Monte Carlo studies of diffraction grating inscription in DNA-based materials. Proceedings of SPIE, 2007, , .	0.8	3
154	Photoinjection of Charge Carriers into 1,3,5–Trintrobenzene Single Crystal. Molecular Crystals and Liquid Crystals, 1984, 106, 1-19.	0.9	2
155	Observation of hiase transition in piezoeletric charge transfer complex carbazole:trinitrobenzene. Ferroelectrics, 1984, 55, 271-274.	0.3	2
156	Effect of the 295 K phase transition in the carbazoleâ€"trinitrobenzene complex on vibrational bands measured by Fourier transform infrared spectroscopy. Spectrochimica Acta Part A: Molecular Spectroscopy, 1985, 41, 1305-1313.	0.1	2
157	The structure of the $1/1$ molecular complex of acridine with $1,2,4,5$ -benzenetetracarbonitrile. Acta Crystallographica Section C: Crystal Structure Communications, $1989, 45, 1044-1047$.	0.4	2
158	On the dynamic self-diffraction in methylene blue-sensitised gelatine. Advanced Materials for Optics and Electronics, 1996, 6, 15-25.	0.6	2
159	Selfâ€diffraction studies in aâ€seâ€nematic liquid crystal cell. Advanced Materials for Optics and Electronics, 1996, 6, 272-278.	0.6	2
160	Calculations of Electric Field Dependence of Effective Refractive Index in Nematic Liquid Crystal Panel. Molecular Crystals and Liquid Crystals, 1998, 325, 117-126.	0.3	2
161	Photoconducting polymer hybrid liquid crystal structures used as optical gain media., 1998, 3474, 172.		2
162	Optically Addressed Liquid Crystalline Light Valves – Theory of their Operation and Applications. Molecular Crystals and Liquid Crystals, 2000, 353, 435-449.	0.3	2

#	Article	IF	Citations
163	Retrieval of computer-generated holograms projected onto liquid crystal-photoconducting polymer system., 2004, 5351, 134.		2
164	Modeling of kinetics of diffraction gratings formation in a polymer matrix containing azobenzene chromophores: simple solvable model versus experiment and Monte Carlo simulations. , 2004, , .		2
165	Towards modelling of stochastic kinetics for process related to photochromic dye semi-intercalation in DNA-based polymer matrix. , $2011,\ldots$		2
166	Modelling of Enhanced Photoinduced Reorientation of Nematic Liquid Crystal Molecules in Twisted Geometry: Monte Carlo Approach. Molecular Crystals and Liquid Crystals, 2012, 554, 56-64.	0.4	2
167	Random lasing in liquid and solid solutions oversaturated with organic laser dye. Proceedings of SPIE, 2014, , .	0.8	2
168	Application of the novel dynamic thermo-optical analysis for identification of the sequence of mesophases in thermotropic liquid crystal. Liquid Crystals, 2017, 44, 1157-1164.	0.9	2
169	Optical trapping mechanisms based on optothermal Marangoni effect. , 2019, , .		2
170	Fourier transform analysis of multi-cavity random laser spectra: Applicability and limits. Optical Materials, 2022, 128, 112322.	1.7	2
171	Phase transition in triglycine sulphate studied by thermally-induced electric oscillations. Ferroelectrics, 1981, 34, 213-217.	0.3	1
172	Application of Semiconducting Electrodes to Measurements of Charge Carrier Mobilities in a Non-photoconducting Organic Crystal; 1,3,5-trinitrobenzene. Molecular Crystals and Liquid Crystals, 1983, 101, 1-17.	0.9	1
173	Comment on the ferroelectric-like behaviour of ferric tris-acetylacetonate. Ferroelectrics, 1985, 62, 47-51.	0.3	1
174	Measurements of pyroelectric properties in [(C ₂ H ₅) ₄ N] ₃ Sb ₂ Br ₉ . Ferroelectrics, 1991, 118, 23-28.	0.3	1
175	A simple numerical simulation model for space charge field formation in photorefractive materials. Journal of Applied Physics, 1995, 77, 1554-1560.	1.1	1
176	Numerical modelling of space charge field in a photorefractive material illuminated by a nonsinusoidal light intensity pattern. Optics Communications, 1996, 128, 385-392.	1.0	1
177	Novel highly efficient hybrid photoconducting polymer-liquid crystal structures and their application for optical beam processing. , 2001, , .		1
178	Influence of light on self-diffraction process in liquid crystal cells with photoconducting polymeric layers. , 2002, , .		1
179	Dynamics of ps-pulse induced gratings in LC panels. , 2002, , .		1
180	Kinetics of photoizomerization of DR1 molecules embedded in solid matrix by a dynamic holography method., 2004, 5351, 319.		1

#	Article	IF	Citations
181	Optical grating recording in highly organized thin films of Disperse Red 1. Macromolecular Symposia, 2004, 212, 93-102.	0.4	1
182	Two-dimensional photonic crystals: fabrication of the periodic arrays by visible light holographic technique., 2005,,.		1
183	Defects generation in photonic crystal pattern by electron beam induced deposition technique., 2005,		1
184	Holographic lithography for grating coupler fabrication in gallium nitride grown on sapphire substrate. , 0, , .		1
185	Monte Carlo Based Design of Photonic Processes in Azopolymers. Molecular Crystals and Liquid Crystals, 2006, 446, 47-54.	0.4	1
186	Nanosecond Laser Pulse-Induced Refractive Index Changes in Anthraquinone-Doped Liquid Crystal. Molecular Crystals and Liquid Crystals, 2008, 496, 310-321.	0.4	1
187	Toward all-optical switching in azobenzene-containing polymers. , 2009, , .		1
188	Photochromic dye semi-intercalation into DNA-based polymeric matrix: experiment, Monte Carlo simulations, and stochastic modeling. Proceedings of SPIE, 2010, , .	0.8	1
189	Influence of surfactant on dynamics of photoinduced motions in a dye-doped deoxyribonucleic acid. Proceedings of SPIE, 2012, , .	0.8	1
190	Studies of new organic molecules and hybrid systems for lasing applications. , 2013, , .		1
191	Lasing and random lasing based on organic molecules. , 2013, , .		1
192	Surface relief grating formation in luminescent dye doped photochromic polymer containing azobenzene side groups. Open Physics, 2013, 11 , .	0.8	1
193	Grating inscription in DR1:DNA-CTMA thin films: theory and experiment. Proceedings of SPIE, 2013, , .	0.8	1
194	Laser inscription of surface structures and induction of optical anisotropy in azo-benzene substituted photochromic polymers and other systems. , 2014, , .		1
195	Bidirectional molecular reorientation induced by localized surface plasmon. RSC Advances, 2014, 4, 2673-2677.	1.7	1
196	Dynamic holography with pulse ps laser in hybrid polymer liquid crystal panel., 2003,,.		1
197	On the Coherent and Incoherent Image Conversion in Hybrid Polymer Liquid Crystal Structures. , 2000, , 199-212.		1
198	Dimethylaniline-Based Hybrid Compounds of Cadmium Diiodide: Synthesis, Crystal Structure, and Physical Properties. Crystal Growth and Design, 2022, 22, 4182-4191.	1.4	1

#	Article	IF	Citations
199	Laser light-induced deformation of free surface of oil due to thermocapillary Marangoni phenomenon: Experiment and computational fluid dynamics simulations. Physics of Fluids, 2022, 34, .	1.6	1
200	Structure of the sodium salt of m-xylenesulfonate monohydrate. Acta Crystallographica Section C: Crystal Structure Communications, 1992, 48, 612-615.	0.4	0
201	Effect of nitrogen addition on optical properties of fluorozirconate glasses. Advanced Materials for Optics and Electronics, 1995, 5, 265-268.	0.6	0
202	Self-diffraction of light in twisted nematic liquid crystal. , 1998, 3318, 414.		0
203	Studies of photorefractive properties of a novel dye-doped nematic liquid crystal system. Advanced Materials for Optics and Electronics, 2000, 10, 55-67.	0.6	0
204	Optically addressable hybrid: photoconducting polymer-liquid crystal panels., 2003,,.		0
205	Influence of the structure of new poly(amide-imide)s on their optical properties. E-Polymers, 2004, 4, .	1.3	0
206	Photonic crystal waveguide - fabrication of the periodic arrays by visible light holographic technique coupled with electron beam-induced deposition. , 0 , , .		0
207	Applications of photorefractive liquid crystals. , 2004, , .		0
208	Photochromism in thin films containing azodyes. , 0, , .		0
209	Temperature-dependent kinetics of diffraction gratings formation in a polymer matrix doped with azobenzene chromophores: Monte Carlo simulations and experiment., 2004, 5517, 207.		0
210	Properties of optically addressed liquid crystal spatial light modulators studied by mach-zehnder interferometry. Macromolecular Symposia, 2004, 212, 435-440.	0.4	0
211	About holographic lithography for grating coupler fabrication in gallium nitride grown by MOVPE on sapphire substrate., 2005, 5956, 368.		0
212	Synthetic photorefractive and photochromic materials and their comparison with bacteriorhodopsin mutants for optical information processing. , 2006, , 217-256.		0
213	Characterization and photoinduced properties of photo chromic polymers. 1. Polyesterimides with 4-amino $4\hat{A}$ -nitro azobenzene moieties. E-Polymers, 2006, 6, .	1.3	0
214	Characterization of two dimensional photonics structures using optical sccaterometry., 2008,,.		0
215	Optical information recording in biopolymer-based material. , 2008, , .		0
216	Quick and non-invasive method for characterisation of profiles of nano-photonics structures. Proceedings of SPIE, 2008, , .	0.8	0

#	Article	IF	CITATIONS
217	Study of dynamic molecular reorientation in azo-containing organometallic thin films. , 2009, , .		O
218	Applications of the DNA-based material for lasing and dynamic holography. , 2009, , .		0
219	Biopolymer-based hybrid systems for lasing applications. , 2010, , .		O
220	Laser emission in a hybrid biopolymer. , 2010, , .		0
221	All optical switching in a photochromic dye-doped biopolymeric matrix. Proceedings of SPIE, 2011, , .	0.8	0
222	Photonic applications of photochromic molecules. , 2012, , .		0
223	Random lasing in bio-polymeric dye-doped systems. , 2013, , .		0
224	Optical Kerr effect in nematic doped with azo-benzene functionalized POSS nanoparticles., 2013,,.		0
225	Degenerated four-wave mixing in chiral nematic liquid crystal exhibiting Bragg-like reflection. , 2013 , ,		O
226	Second harmonic generation and two-photon excitation fluorescence from individual nanocrystals of pyrazoline derivatives. , 2013 , , .		0
227	Polarization Gratings in Disperse Red 1 Doped Polystyrene. , 2000, , 299-310.		0
228	Photosensitive Guest-Host Polymer for Optical Data Storage. Acta Physica Polonica A, 1995, 87, 971-980.	0.2	0