Hyeokjo Gwon

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8363718/hyeokjo-gwon-publications-by-year.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

38 35 5,542 30 h-index g-index citations papers 6,000 18 38 5.35 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
35	Pliable Lithium Superionic Conductor for All-Solid-State Batteries. ACS Energy Letters, 2021, 6, 2006-201	1 5 0.1	12
34	A safe and sustainable bacterial cellulose nanofiber separator for lithium rechargeable batteries. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 19288-19293	3 ^{11.5}	30
33	Understanding the effects of chemical reactions at the cathodellectrolyte interface in sulfide based all-solid-state batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 22967-22976	13	30
32	Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries. <i>Nature Energy</i> , 2017 , 2,	62.3	72
31	Rational design of redox mediators for advanced LiD2 batteries. <i>Nature Energy</i> , 2016 , 1,	62.3	263
30	Lithium-excess olivine electrode for lithium rechargeable batteries. <i>Energy and Environmental Science</i> , 2016 , 9, 2902-2915	35.4	36
29	Sodium-Ion Storage in Pyroprotein-Based Carbon Nanoplates. <i>Advanced Materials</i> , 2015 , 27, 6914-21	24	107
28	ReviewLithium-Excess Layered Cathodes for Lithium Rechargeable Batteries. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A2447-A2467	3.9	121
27	A New Perspective on Li-SO2 Batteries for Rechargeable Systems. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9663-7	16.4	29
26	A New Perspective on LiBO2 Batteries for Rechargeable Systems. <i>Angewandte Chemie</i> , 2015 , 127, 9799-	-9803	9
25	Räktitelbild: A New Perspective on LiBO2 Batteries for Rechargeable Systems (Angew. Chem. 33/2015). <i>Angewandte Chemie</i> , 2015 , 127, 9860-9860	3.6	
24	Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 392	6 ⁻¹⁶ 74	360
23	Recent progress on flexible lithium rechargeable batteries. <i>Energy and Environmental Science</i> , 2014 , 7, 538-551	35.4	314
22	Ion-exchange mechanism of layered transition-metal oxides: case study of LiNi(0.5)Mn(0.5)OII <i>Inorganic Chemistry</i> , 2014 , 53, 8083-7	5.1	34
21	Superior Rechargeability and Efficiency of Lithium Dxygen Batteries: Hierarchical Air Electrode Architecture Combined with a Soluble Catalyst. <i>Angewandte Chemie</i> , 2014 , 126, 4007-4012	3.6	80
2 0	Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries. <i>Advanced Energy Materials</i> , 2014 , 4, 1300787	21.8	709
19	A Novel High-Energy Hybrid Supercapacitor with an Anatase TiO2Reduced Graphene Oxide Anode and an Activated Carbon Cathode. <i>Advanced Energy Materials</i> , 2013 , 3, 1500-1506	21.8	451

(2009-2013)

18	Mechanism of Co3O4/graphene catalytic activity in LiD2 batteries using carbonate based electrolytes. <i>Electrochimica Acta</i> , 2013 , 90, 63-70	6.7	44
17	A new catalyst-embedded hierarchical air electrode for high-performance LiD2 batteries. <i>Energy and Environmental Science</i> , 2013 , 6, 3570	35.4	134
16	Enhanced power and rechargeability of a Li-O2 battery based on a hierarchical-fibril CNT electrode. <i>Advanced Materials</i> , 2013 , 25, 1348-52	24	282
15	Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 3623-9	3.6	110
14	Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell. <i>Journal of the American Chemical Society</i> , 2013 , 135, 9733-42	16.4	262
13	Energy storage in composites of a redox couple host and a lithium ion host. <i>Nano Today</i> , 2012 , 7, 168-1	73 7.9	38
12	A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 20535		253
11	The potential for long-term operation of a lithium-oxygen battery using a non-carbonate-based electrolyte. <i>Chemical Communications</i> , 2012 , 48, 8374-6	5.8	96
10	Flexible energy storage devices based on graphene paper. <i>Energy and Environmental Science</i> , 2011 , 4, 1277	35.4	497
9	Synthesis of Multicomponent Olivine by a Novel Mixed Transition Metal Oxalate Coprecipitation Method and Electrochemical Characterization. <i>Chemistry of Materials</i> , 2010 , 22, 2573-2581	9.6	59
8	Multicomponent Olivine Cathode for Lithium Rechargeable Batteries: A First-Principles Study. <i>Chemistry of Materials</i> , 2010 , 22, 518-523	9.6	81
7	Structural evolution of layered Li1.2Ni0.2Mn0.6O2 upon electrochemical cycling in a Li rechargeable battery. <i>Journal of Materials Chemistry</i> , 2010 , 20, 10179		184
6	SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. <i>Nano Research</i> , 2010 , 3, 813-821	10	171
5	Fabrication of FeF3 Nanoflowers on CNT branches and their application to high power lithium rechargeable batteries. <i>Advanced Materials</i> , 2010 , 22, 5260-4	24	242
4	Combined First-Principle Calculations and Experimental Study on Multi-Component Olivine Cathode for Lithium Rechargeable Batteries. <i>Advanced Functional Materials</i> , 2009 , 19, 3285-3292	15.6	112
3	Comparative study of Li(Li1/3Ti5/3)O4 and Li(Ni1/2½Li2x/3Tix/3)Ti3/2O4 (x=1/3) anodes for Li rechargeable batteries. <i>Electrochimica Acta</i> , 2009 , 54, 5914-5918	6.7	31
2	Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly. <i>ACS Nano</i> , 2009 , 3, 1085-90	16.7	183
1	Phase Stability Study of Li[sub 1월]MnPO[sub 4] (0월월) Cathode for Li Rechargeable Battery. Journal of the Electrochemical Society, 2009 , 156, A635	3.9	106