
Merav Socolovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/836355/publications.pdf Version: 2024-02-01

MERAN SOCOLOVSKY

#	Article	IF	CITATIONS
1	What differentiates a stress response from responsiveness in general?. Cell Systems, 2022, 13, 195-200.	6.2	0
2	The role of specialized cell cycles during erythroid lineage development: insights from single-cell RNA sequencing. International Journal of Hematology, 2022, 116, 163-173.	1.6	4
3	The shifting shape and functional specializations of the cell cycle during lineage development. WIREs Mechanisms of Disease, 2021, 13, e1504.	3.3	13
4	Epor Stimulates Rapid Cycling and Larger Red Cells during Mouse and Human Erythropoiesis. Blood, 2021, 138, 852-852.	1.4	0
5	EpoR stimulates rapid cycling and larger red cells during mouse and human erythropoiesis. Nature Communications, 2021, 12, 7334.	12.8	18
6	Role of Interferonâ€Î³â€"Producing Th1 Cells in a Murine Model of Type I Interferon–Independent Autoinflammation Resulting From DN ase II Deficiency. Arthritis and Rheumatology, 2020, 72, 359-370.	5.6	9
7	Dynamics of the 4D genome during in vivo lineage specification and differentiation. Nature Communications, 2020, 11, 2722.	12.8	79
8	From blood development to disease: a paradigm for clinical translation. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	4
9	3027 – HSC-INDEPENDENT EMP CONTAIN ERYTHROID/MEGAKARYOCYTE AND INNATE LYMPHOID/MYELOID LINEAGE HETEROGENEITY PRIOR TO SEEDING THE FETAL LIVER. Experimental Hematology, 2020, 88, S46.	0.4	0
10	Blood Cell Fate Decisions: Insights from Single-cell RNA-seq. Blood, 2019, 134, SCI-20-SCI-20.	1.4	0
11	Population snapshots predict early haematopoietic and erythroid hierarchies. Nature, 2018, 555, 54-60.	27.8	292
12	Fundamental limits on dynamic inference from single-cell snapshots. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2467-E2476.	7.1	243
13	High-throughput single-cell fate potential assay of murine hematopoietic progenitors in vitro. Experimental Hematology, 2018, 60, 21-29.e3.	0.4	7
14	Global increase in replication fork speed during a p57 ^{KIP2} -regulated erythroid cell fate switch. Science Advances, 2017, 3, e1700298.	10.3	44
15	Increased EPO Levels Are Associated With Bone Loss in Mice Lacking PHD2 in EPO-Producing Cells. Journal of Bone and Mineral Research, 2016, 31, 1877-1887.	2.8	56
16	Population Balance Reconstruction of the Hematopoietic Differentiation Hierarchy. Blood, 2016, 128, 3861-3861.	1.4	0
17	Reconstructing Early Erythroid Development In Vivo Using Single-Cell Transcriptomics. Blood, 2016, 128, 1195-1195.	1.4	0
18	Global Increase in Replication Fork Speed during a p57KIP2-Regulated Erythroid Cell Fate Switch. Blood, 2016, 128, 698-698.	1.4	0

MERAV SOCOLOVSKY

#	Article	IF	CITATIONS
19	Activation of the Erythroid Transcriptional Program in Murine Adult Bone Marrow Takes Place during a Faster, Shorter S Phase and Is Dependent on S Phase Progression. Blood, 2015, 126, 2130-2130.	1.4	0
20	Erythropoiesis: From Molecular Pathways to System Properties. Advances in Experimental Medicine and Biology, 2014, 844, 37-58.	1.6	36
21	Activation of the Erythroid Transcriptional Program in Vivo Requires a Transient Shortening of S Phase, Regulated By the Cyclin-Dependent-Kinase Inhibitor p57KIP2. Blood, 2014, 124, 450-450.	1.4	0
22	Exploring the erythroblastic island. Nature Medicine, 2013, 19, 399-401.	30.7	24
23	Deletion Of Core Binding Factors Runx1 and Runx2 Leads To Perturbed Hematopoiesis In Multiple Lineages. Blood, 2013, 122, 46-46.	1.4	1
24	The Erythropoietin Receptor Regulates The Number Of Cell Divisions and The Duration Of Erythroblast Terminal Differentiation By Regulating Erythroblast Iron. Blood, 2013, 122, 428-428.	1.4	0
25	Systems Biology and Epigenetic Mechanisms in Erythropoiesis. Blood, 2013, 122, SCI-11-SCI-11.	1.4	0
26	Stat5 Signaling Specifies Basal versus Stress Erythropoietic Responses through Distinct Binary and Graded Dynamic Modalities. PLoS Biology, 2012, 10, e1001383.	5.6	39
27	Contrasting dynamic responses in vivo of the Bcl-xL and Bim erythropoietic survival pathways. Blood, 2012, 119, 1228-1239.	1.4	41
28	Negative Autoregulation by Fas Stabilizes Adult Erythropoiesis and Accelerates Its Stress Response. PLoS ONE, 2011, 6, e21192.	2.5	37
29	Identification and Analysis of Mouse Erythroid Progenitors using the CD71/TER119 Flow-cytometric Assay. Journal of Visualized Experiments, 2011, , .	0.3	98
30	Global DNA Demethylation During Mouse Erythropoiesis in Vivo. Science, 2011, 334, 799-802.	12.6	142
31	Developmental Control of Apoptosis by the Immunophilin Aryl Hydrocarbon Receptor-interacting Protein (AIP) Involves Mitochondrial Import of the Survivin Protein. Journal of Biological Chemistry, 2011, 286, 16758-16767.	3.4	35
32	A Key Commitment Step in Erythropoiesis Is Synchronized with the Cell Cycle Clock through Mutual Inhibition between PU.1 and S-Phase Progression. PLoS Biology, 2010, 8, e1000484.	5.6	149
33	Global DNA Demethylation During Physiological Erythropoiesis In Vivo. Blood, 2010, 116, 2083-2083.	1.4	1
34	Negative Autoregulation by Fas Stabilizes the Erythroid Progenitor Pool and Accelerates the Erythropoietic Stress Response. Blood, 2010, 116, 2045-2045.	1.4	1
35	Digital and Analog Modes of Stat5 Signaling Regulate Basal and Stress Erythropoiesis. Blood, 2010, 116, 4766-4766.	1.4	0

36 Intracellular signaling by the erythropoietin receptor. , 2009, , 155-174.

MERAV SOCOLOVSKY

#	Article	IF	CITATIONS
37	System-Level Analysis of Two Erythroid Progenitor Survival Pathways Reveals Their Distinct Dynamical Properties. Blood, 2008, 112, 2467-2467.	1.4	0
38	Negative Autoregulation by FAS Mediates Robust Fetal Erythropoiesis. PLoS Biology, 2007, 5, e252.	5.6	51
39	Molecular insights into stress erythropoiesis. Current Opinion in Hematology, 2007, 14, 215-224.	2.5	119
40	Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood, 2006, 108, 123-133.	1.4	192
41	Flow-Cytometric Measurement of Stat5 Phosphorylation In Vivo in the Mouse Blood, 2006, 108, 1158-1158.	1.4	7
42	BCL-XL mRNA Is Induced in Erythroid Progenitors In Vivo in a Mouse Model of Erythropoietic Stress Blood, 2006, 108, 1129-1129.	1.4	13
43	Bcl-xL Does Not Rescue Erythroid Colony (CFU-e) Formation in EpoRâ^'/â^' Progenitors, Suggesting a Cell-Cycle Role for EpoR Blood, 2006, 108, 1117-1117.	1.4	Ο
44	Transgenic Analysis of the Stem Cell Leukemia +19 Stem Cell Enhancer in Adult and Embryonic Hematopoietic and Endothelial Cells. Stem Cells, 2005, 23, 1378-1388.	3.2	35
45	An SCL +19 Core Enhancer Targets Three Mesoderm-Derived Cell Lineages - Blood, Endothelium and Smooth Muscle Blood, 2004, 104, 4200-4200.	1.4	Ο
46	Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry–based novel culture system. Blood, 2003, 102, 3938-3946.	1.4	365
47	Rb and N- ras Function Together To Control Differentiation in the Mouse. Molecular and Cellular Biology, 2003, 23, 5256-5268.	2.3	49
48	The signaling domain of the erythropoietin receptor rescues prolactin receptor-mutant mammary epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14241-14245.	7.1	29
49	Ineffective erythropoiesis in Stat5aâ^'/â^'5bâ^'/â^' mice due to decreased survival of early erythroblasts. Blood, 2001, 98, 3261-3273.	1.4	625
50	Genetic Analysis of BRCA1 Function in a Defined Tumor Cell Line. Molecular Cell, 1999, 4, 1093-1099.	9.7	332
51	Fetal Anemia and Apoptosis of Red Cell Progenitors in Stat5aâ^'/â^'5bâ^'/â^' Mice. Cell, 1999, 98, 181-191.	28.9	665
52	Cytokines in Hematopoiesis: Specificity and Redundancy in Receptor Function. Advances in Protein Chemistry, 1998, 52, 141-198.	4.4	20
53	Tyrosine Residues within the Intracellular Domain of the Erythropoietin Receptor Mediate Activation of AP-1 Transcription Factors. Journal of Biological Chemistry, 1998, 273, 2396-2401.	3.4	33
54	The Prolactin Receptor Rescues EpoRâ^'/â^' Erythroid Progenitors and Replaces EpoR in a Synergistic Interaction With c-kit. Blood, 1998, 92, 1491-1496.	1.4	59

#	Article	IF	CITATIONS
55	The Prolactin Receptor Rescues EpoRâ^'/â^' Erythroid Progenitors and Replaces EpoR in a Synergistic Interaction With c-kit. Blood, 1998, 92, 1491-1496.	1.4	2
56	The Prolactin Receptor and Severely Truncated Erythropoietin Receptors Support Differentiation of Erythroid Progenitors. Journal of Biological Chemistry, 1997, 272, 14009-14012.	3.4	95
57	CYTOKINE RECEPTOR SIGNAL TRANSDUCTION AND THE CONTROL OF HEMATOPOIETIC CELL DEVELOPMENT. Annual Review of Cell and Developmental Biology, 1996, 12, 91-128.	9.4	196