Hans Renata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8362741/publications.pdf

Version: 2024-02-01

218381 223531 2,615 45 26 46 h-index citations g-index papers 65 65 65 2296 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Recent Progress and Developments in Chemoenzymatic and Biocatalytic Dynamic Kinetic Resolution. Organic Process Research and Development, 2022, 26, 1925-1943.	1.3	21
2	Remote B-Ring Oxidation of Sclareol with an Engineered P450 Facilitates Divergent Access to Complex Terpenoids. Journal of the American Chemical Society, 2022, 144, 7616-7621.	6.6	14
3	Exploration of Iron- and α-Ketoglutarate-Dependent Dioxygenases as Practical Biocatalysts in Natural Product Synthesis. Synlett, 2021, 32, 775-784.	1.0	13
4	Modular Chemoenzymatic Synthesis of GE81112 B1 and Related Analogues Enables Elucidation of Its Key Pharmacophores. Journal of the American Chemical Society, 2021, 143, 1673-1679.	6.6	21
5	Synthetic utility of oxygenases in site-selective terpenoid functionalization. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	1.4	9
6	Reinvigorating the Chiral Pool: Chemoenzymatic Approaches to Complex Peptides and Terpenoids. Accounts of Chemical Research, 2021, 54, 1143-1156.	7.6	37
7	Concise Chemoenzymatic Synthesis of Fasamycin A. Journal of Organic Chemistry, 2021, 86, 11206-11211.	1.7	8
8	Regiodivergent biocatalytic hydroxylation of l-Glutamine facilitated by characterization of Non-Heme dioxygenases from Non-Ribosomal peptide biosyntheses. Tetrahedron, 2021, 90, 132190.	1.0	9
9	Stereoselective Synthesis of βâ€Branched Aromatic αâ€Amino Acids by Biocatalytic Dynamic Kinetic Resolution**. Angewandte Chemie, 2021, 133, 17821-17826.	1.6	2
10	Practical Enzymatic Production of Carbocycles. Chemistry - A European Journal, 2021, 27, 11773-11794.	1.7	3
11	Stereoselective Synthesis of βâ€Branched Aromatic αâ€Amino Acids by Biocatalytic Dynamic Kinetic Resolution**. Angewandte Chemie - International Edition, 2021, 60, 17680-17685.	7.2	16
12	Frontispiece: Practical Enzymatic Production of Carbocycles. Chemistry - A European Journal, 2021, 27,	1.7	0
13	A Chiral-Pool-Based Strategy to Access <i>trans-syn</i> -Fused Drimane Meroterpenoids: Chemoenzymatic Total Syntheses of Polysin, <i>N</i> -Acetyl-polyveoline and the Chrodrimanins. Journal of the American Chemical Society, 2021, 143, 18280-18286.	6.6	25
14	Concise Chemoenzymatic Total Synthesis and Identification of Cellular Targets of Cepafungin I. Cell Chemical Biology, 2020, 27, 1318-1326.e18.	2.5	20
15	Biocatalytic Oxidative Cyclization with 2-ODD-PH. Trends in Chemistry, 2020, 2, 954-955.	4.4	О
16	Divergent synthesis of complex diterpenes through a hybrid oxidative approach. Science, 2020, 369, 799-806.	6.0	89
17	Harnessing the biocatalytic potential of iron- and $\hat{l}\pm$ -ketoglutarate-dependent dioxygenases in natural product total synthesis. Natural Product Reports, 2020, 37, 1065-1079.	5.2	47
18	Merging chemoenzymatic and radical-based retrosynthetic logic for rapid and modular synthesis of oxidized meroterpenoids. Nature Chemistry, 2020, 12, 173-179.	6.6	66

#	Article	IF	CITATIONS
19	Recent advances in the chemoenzymatic synthesis of bioactive natural products. Current Opinion in Chemical Biology, 2020, 55, 111-118.	2.8	47
20	Asymmetric Chemoenzymatic Synthesis of (â^)â€Podophyllotoxin and Related Aryltetralin Lignans. Angewandte Chemie, 2019, 131, 11783-11786.	1.6	10
21	Characterization of a Citrulline 4â€Hydroxylase from Nonribosomal Peptide GE81112 Biosynthesis and Engineering of Its Substrate Specificity for the Chemoenzymatic Synthesis of Enduracididine. Angewandte Chemie - International Edition, 2019, 58, 18854-18858.	7.2	31
22	Characterization of a Citrulline 4â€Hydroxylase from Nonribosomal Peptide GE81112 Biosynthesis and Engineering of Its Substrate Specificity for the Chemoenzymatic Synthesis of Enduracididine. Angewandte Chemie, 2019, 131, 19030-19034.	1.6	3
23	Identification of a lysine 4-hydroxylase from the glidobactin biosynthesis and evaluation of its biocatalytic potential. Organic and Biomolecular Chemistry, 2019, 17, 1736-1739.	1.5	35
24	Asymmetric Chemoenzymatic Synthesis of (â^')â€Podophyllotoxin and Related Aryltetralin Lignans. Angewandte Chemie - International Edition, 2019, 58, 11657-11660.	7.2	54
25	Efficient chemoenzymatic synthesis of (2S,3R)-3-hydroxy-3-methylproline, a key fragment in polyoxypeptin A and FR225659. Tetrahedron, 2019, 75, 3253-3257.	1.0	7
26	Cryptic and Stereospecific Hydroxylation, Oxidation, and Reduction in Platensimycin and Platencin Biosynthesis. Journal of the American Chemical Society, 2019, 141, 4043-4050.	6.6	25
27	A dual C–H functionalization strategy for the total synthesis of tambromycin. Strategies and Tactics in Organic Synthesis, 2019, 14, 187-206.	0.1	1
28	Enzymatic assembly of carbon–carbon bonds via iron-catalysed sp3 C–H functionalization. Nature, 2019, 565, 67-72.	13.7	233
29	Enzymatic C H functionalizations for natural product synthesis. Current Opinion in Chemical Biology, 2019, 49, 25-32.	2.8	43
30	Total Synthesis of Tambromycin by Combining Chemocatalytic and Biocatalytic Câ^'H Functionalization. Angewandte Chemie - International Edition, 2018, 57, 5037-5041.	7.2	75
31	Total Synthesis of Tambromycin by Combining Chemocatalytic and Biocatalytic Câ^'H Functionalization. Angewandte Chemie, 2018, 130, 5131-5135.	1.6	14
32	Remote C–H Hydroxylation by an α-Ketoglutarate-Dependent Dioxygenase Enables Efficient Chemoenzymatic Synthesis of Manzacidin C and Proline Analogs. Journal of the American Chemical Society, 2018, 140, 1165-1169.	6.6	96
33	Applications of Oxygenases in the Chemoenzymatic Total Synthesis of Complex Natural Products. Biochemistry, 2018, 57, 403-412.	1.2	45
34	A one-pot chemoenzymatic synthesis of (2S, 4R)-4-methylproline enables the first total synthesis of antiviral lipopeptide cavinafungin B. Tetrahedron, 2018, 74, 6469-6473.	1.0	14
35	Cytochrome P450-Catalyzed Hydroxylation Initiating Ether Formation in Platensimycin Biosynthesis. Journal of the American Chemical Society, 2018, 140, 12349-12353.	6.6	31
36	Evolution of Biocatalytic and Chemocatalytic C–H Functionalization Strategy in the Synthesis of Manzacidin C. Journal of Organic Chemistry, 2018, 83, 7407-7415.	1.7	42

#	Article	IF	CITATION
37	Directed Evolution of a Bright Near-Infrared Fluorescent Rhodopsin Using a Synthetic Chromophore. Cell Chemical Biology, 2017, 24, 415-425.	2.5	55
38	Identification of Mechanism-Based Inactivation in P450-Catalyzed Cyclopropanation Facilitates Engineering of Improved Enzymes. Journal of the American Chemical Society, 2016, 138, 12527-12533.	6.6	58
39	Highly Stereoselective Biocatalytic Synthesis of Key Cyclopropane Intermediate to Ticagrelor. ACS Catalysis, 2016, 6, 7810-7813.	5.5	66
40	Expanding the Enzyme Universe: Accessing Nonâ€Natural Reactions by Mechanismâ€Guided Directed Evolution. Angewandte Chemie - International Edition, 2015, 54, 3351-3367.	7.2	421
41	Development of a Concise Synthesis of Ouabagenin and Hydroxylated Corticosteroid Analogues. Journal of the American Chemical Society, 2015, 137, 1330-1340.	6.6	105
42	Improved Cyclopropanation Activity of Histidineâ€Ligated Cytochromeâ€P450 Enables the Enantioselective Formal Synthesis of Levomilnacipran. Angewandte Chemie - International Edition, 2014, 53, 6810-6813.	7.2	171
43	P450-catalyzed asymmetric cyclopropanation of electron-deficient olefins under aerobic conditions. Catalysis Science and Technology, 2014, 4, 3640-3643.	2.1	59
44	Cytochrome P450-catalyzed insertion of carbenoids into N–H bonds. Chemical Science, 2014, 5, 598-601.	3.7	160
45	Strategic Redox Relay Enables A Scalable Synthesis of Ouabagenin, A Bioactive Cardenolide. Science, 2013, 339, 59-63.	6.0	158