
Philippe Horellou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8362553/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clinical Features and Risk of Relapse in Children and Adults with Myelin Oligodendrocyte Glycoprotein Antibody–Associated Disease. Annals of Neurology, 2021, 89, 30-41.	2.8	123
2	Progressive Leukodystrophy-Like Demyelinating Syndromes with MOG-Antibodies in Children: A Rare Under-Recognized Phenotype. Neuropediatrics, 2021, 52, 337-340.	0.3	6
3	Regulatory T Cells Increase After rh-MOG Stimulation in Non-Relapsing but Decrease in Relapsing MOG Antibody-Associated Disease at Onset in Children. Frontiers in Immunology, 2021, 12, 679770.	2.2	7
4	Recombinant myelin oligodendrocyte glycoprotein quality modifies evolution of experimental autoimmune encephalitis in macaques. Laboratory Investigation, 2021, 101, 1513-1522.	1.7	1
5	Risk factors for academic difficulties in children with myelin oligodendrocyte glycoprotein antibodyâ€associated acute demyelinating syndromes. Developmental Medicine and Child Neurology, 2020, 62, 1075-1081.	1.1	13
6	Intradermal vaccination prevents anti-MOG autoimmune encephalomyelitis in macaques. EBioMedicine, 2019, 47, 492-505.	2.7	13
7	Anti-MOG autoantibodies pathogenicity in children and macaques demyelinating diseases. Journal of Neuroinflammation, 2019, 16, 244.	3.1	14
8	Cranial nerve involvement in patients with MOG antibody–associated disease. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e543.	3.1	53
9	Increased interleukin-6 correlates with myelin oligodendrocyte glycoprotein antibodies in pediatric monophasic demyelinating diseases and multiple sclerosis. Journal of Neuroimmunology, 2015, 289, 1-7.	1.1	40
10	Induction of monocyte chemoattractant protein-1 (MCP-1/CCL2) gene expression by human immunodeficiency virus-1 Tat in human astrocytes is CDK9 dependent. Journal of NeuroVirology, 2010, 16, 150-167.	1.0	16
11	1-methyl-4-phenylpyridinium neurotoxicity is attenuated by adenoviral gene transfer of human Cu/Zn superoxide dismutase. Journal of Neuroscience Research, 2006, 83, 233-242.	1.3	29
12	CCR5-, DC-SIGN-Dependent Endocytosis and Delayed Reverse Transcription after Human Immunodeficiency Virus Type 1 Infection in Human Astrocytes. AIDS Research and Human Retroviruses, 2006, 22, 1152-1161.	0.5	22
13	Gene transfer of constitutively active caspase-3 induces apoptosis in a human hepatoma cell line. Journal of Gene Medicine, 2005, 7, 30-38.	1.4	10
14	Targeting of c-Met and urokinase expressing human glioma cell lines by retrovirus vector displaying single-chain variable fragment antibody. Cancer Biology and Therapy, 2005, 4, 987-992.	1.5	7
15	Retroviral display of urokinase-binding domain fused to amphotropic envelope protein. Biochemical and Biophysical Research Communications, 2005, 331, 1485-1493.	1.0	1
16	Abnormal production of the TNF-homologue APRIL increases the proliferation of human malignant glioblastoma cell lines via a specific receptor. Oncogene, 2004, 23, 3005-3012.	2.6	55
17	Intrastriatal Grafting of Cos Cells Stably Expressing Human Aromatic I-Amino Acid Decarboxylase: Neurochemical Effects. Journal of Neurochemistry, 2002, 68, 1520-1526.	2.1	12
18	Expression of Interleukin 13 Receptor in Glioma and Renal Cell Carcinoma: IL13Rα2 as a Decoy Receptor for IL13. Laboratory Investigation, 2001, 81, 1223-1231.	1.7	69

Philippe Horellou

#	Article	IF	CITATIONS
19	A Glial Cell Line-Derived Neurotrophic Factor-Secreting Clone of the Schwann Cell Line SCTM41 Enhances Survival and Fiber Outgrowth from Embryonic Nigral Neurons Grafted to the Striatum and to the Lesioned Substantia Nigra. Journal of Neuroscience, 1999, 19, 2301-2312.	1.7	95
20	A single adenovirus vector mediates doxycycline-controlled expression of tyrosine hydroxylase in brain grafts of human neural progenitors. Nature Biotechnology, 1999, 17, 349-354.	9.4	104
21	Brain-Derived Neurotrophic Factor-Mediated Protection of Striatal Neurons in an Excitotoxic Rat Model of Huntington's Disease, as Demonstrated by Adenoviral Gene Transfer. Human Gene Therapy, 1999, 10, 2987-2997.	1.4	161
22	Neuronal grafts for Huntington's disease. Nature Medicine, 1998, 4, 669-670.	15.2	2
23	Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8818-8823.	3.3	301
24	In VivoAdenovirus-Mediated Gene Transfer for Parkinson's Disease. Neurobiology of Disease, 1997, 4, 280-287.	2.1	8
25	Adenovirus-Mediated Gene Transfer to the Central Nervous System for Parkinson's Disease. Experimental Neurology, 1997, 144, 131-138.	2.0	26
26	Gene therapy for Parkinson's disease. Molecular Neurobiology, 1997, 15, 241-256.	1.9	36
27	Generation of DOPA-Producing Astrocytes by Retroviral Transduction of the Human Tyrosine Hydroxylase Gene:In VitroCharacterization andin VivoEffects in the Rat Parkinson Model. Experimental Neurology, 1996, 139, 39-53.	2.0	134
28	An adenovirus encoding CuZnSOD protects cultured striatal neurones against glutamate toxicity. NeuroReport, 1996, 7, 497-501.	0.6	25
29	Intracerebral tetracycline-dependent regulation of gene expression in grafts of neural precursors. NeuroReport, 1996, 7, 1655-1659.	0.6	34
30	Transplantation to the rat brain of human neural progenitors that were genetically modified using adenoviruses. Nature Genetics, 1995, 9, 256-260.	9.4	165
31	Adenovirus. , 1995, , 41-51.		0
32	Direct intracerebral gene transfer of an adenoviral vector expressing tyrosine hydroxylase in a rat model of ParkinsonE1⁄4s disease. NeuroReport, 1994, 6, 49-53.	0.6	167
33	Gene transfer in situ and in cells for intracerebral transplantation. Seminars in Neuroscience, 1993, 5, 453-459.	2.3	2
34	Retroviral-mediated gene transfer of the porcine choline acetyltransferase: A model to study the synthesis and secretion of acetylcholine in mammalian cells. Neurochemistry International, 1993, 22, 511-516.	1.9	3
35	Co-expression of tyrosine hydroxylase messenger RNA 1 and 2 in human ventral mesencephalon revealed by digoxigenin- and biotin-labelled oligodeoxyribonucleotides. Journal of Chemical Neuroanatomy, 1992, 5, 11-18.	1.0	15
36	Identification and expression of the cDNA of KIN17, a zinc-finger gene located on mouse chromosome 2, encoding a new DNA-binding protein. Nucleic Acids Research, 1991, 19, 5117-5123.	6.5	50

Philippe Horellou

#	Article	IF	CITATIONS
37	Chapter 3 Exogeneous expression of L-dopa and dopamine in various cell lines following transfer of rat and human tyrosine hydroxylase cDNA: grafting in an animal model of Parkinson's disease. Progress in Brain Research, 1990, 82, 23-32.	0.9	25
38	Behavioural Effect of Engineered Cells that Synthesize L-DOPA or Dopamine after Grafting into the Rat Neostriatum. European Journal of Neuroscience, 1990, 2, 116-119.	1.2	102
39	In vivo release of DOPA and dopamine from genetically engineered cells grafted to the denervated rat striatum. Neuron, 1990, 5, 393-402.	3.8	236
40	A molecular genetic approach to the study of catecholamines. Biochemical Society Transactions, 1987, 15, 126-128.	1.6	6
41	A single RNA species injected in Xenopus oocyte directs the synthesis of active tyrosine hydroxylase. FEBS Letters, 1986, 205, 6-10.	1.3	12