

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8362535/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Low loss superconducting titanium nitride coplanar waveguide resonators. Applied Physics Letters, 2010, 97, .	3.3	141
2	Traveling wave parametric amplifier with Josephson junctions using minimal resonator phase matching. Applied Physics Letters, 2015, 106, .	3.3	124
3	Materials loss measurements using superconducting microwave resonators. Review of Scientific Instruments, 2020, 91, 091101.	1.3	91
4	Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing. Applied Physics Letters, 2016, 108, .	3.3	83
5	Equivalence of the Effects on the Complex Conductivity of Superconductor due to Temperature Change andÂExternal Pair Breaking. Journal of Low Temperature Physics, 2008, 151, 557-563.	1.4	70
6	A titanium-nitride near-infrared kinetic inductance photon-counting detector and its anomalous electrodynamics. Applied Physics Letters, 2012, 101, .	3.3	69
7	Development of a Broadband NbTiN Traveling Wave Parametric Amplifier for MKID Readout. Journal of Low Temperature Physics, 2014, 176, 476-482.	1.4	62
8	Photon-noise limited sensitivity in titanium nitride kinetic inductance detectors. Applied Physics Letters, 2015, 106, .	3.3	57
9	Broadband parametric amplifiers based on nonlinear kinetic inductance artificial transmission lines. Applied Physics Letters, 2017, 110, .	3.3	51
10	Counting near infrared photons with microwave kinetic inductance detectors. Applied Physics Letters, 2017, 110, .	3.3	45
11	Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond. Journal of Low Temperature Physics, 2018, 193, 120-127.	1.4	36
12	Sensitivity of the Prime-Cam Instrument on the CCAT-Prime Telescope. Journal of Low Temperature Physics, 2020, 199, 1089-1097.	1.4	30
13	Strongly quadrature-dependent noise in superconducting microresonators measured at the vacuum-noise limit. Applied Physics Letters, 2011, 98, .	3.3	26
14	Superconducting micro-resonator arrays with ideal frequency spacing. Applied Physics Letters, 2017, 111, .	3.3	26
15	Frequency Comb Generation in Superconducting Resonators. Physical Review Letters, 2014, 113, 187002.	7.8	23
16	A WIMP Dark Matter Detector Using MKIDs. Journal of Low Temperature Physics, 2008, 151, 550-556.	1.4	19
17	The Simons Observatory Microwave SQUID Multiplexing Detector Module Design. Astrophysical Journal, 2021, 922, 38.	4.5	17
18	Optical Demonstration of THz, Dual-Polarization Sensitive Microwave Kinetic Inductance Detectors. Journal of Low Temperature Physics, 2016, 184, 173-179.	1.4	16

J Gao

#	Article	IF	CITATIONS
19	Improvements in Silicon Oxide Dielectric Loss for Superconducting Microwave Detector Circuits. IEEE Transactions on Applied Superconductivity, 2013, 23, 1501204-1501204.	1.7	15
20	Performance of a Kinetic Inductance Traveling-Wave Parametric Amplifier at 4 Kelvin: Toward an Alternative to Semiconductor Amplifiers. Physical Review Applied, 2022, 17, .	3.8	15
21	Ultrastable millimeter-wave kinetic inductance detectors. Applied Physics Letters, 2020, 116, .	3.3	13
22	Properties of TiN for Detector and Amplifier Applications. Journal of Low Temperature Physics, 2014, 176, 136-141.	1.4	12
23	The Simons Observatory Large Aperture Telescope Receiver. Astrophysical Journal, Supplement Series, 2021, 256, 23.	7.7	11
24	280 GHz Focal Plane Unit Design and Characterization for the Spider-2 Suborbital Polarimeter. Journal of Low Temperature Physics, 2018, 193, 1075-1084.	1.4	9
25	Low-Temperature Detectors for CMB Imaging Arrays. Journal of Low Temperature Physics, 2018, 193, 633-647.	1.4	9
26	New Method for Determining the Quality Factor and Resonance Frequency of Superconducting Micro-Resonators from Sonnet Simulations. Journal of Low Temperature Physics, 2014, 176, 538-544.	1.4	8
27	Measurement of Optical Constants of TiN and TiN/Ti/TiN Multilayer Films for Microwave Kinetic Inductance Photon-Number-Resolving Detectors. Journal of Low Temperature Physics, 2019, 194, 361-369.	1.4	7
28	Demonstration of 220/280ÂGHz Multichroic Feedhorn-Coupled TES Polarimeter. Journal of Low Temperature Physics, 2020, 199, 891-897.	1.4	7
29	Kinetic Inductance Phonon Sensors for the Cryogenic Dark Matter Search Experiment. Journal of Low Temperature Physics, 2008, 151, 544-549.	1.4	6
30	Sub-kelvin thermometer for on-chip measurements of microwave devices utilizing two-level systems in superconducting microresonators. Applied Physics Letters, 2020, 117, 192601.	3.3	4
31	Dual-Polarization-Sensitive Kinetic Inductance Detectors for Balloon-borne Sub-millimeter Polarimetry. Journal of Low Temperature Physics, 2014, 176, 490-496.	1.4	2
32	Characterization of Aliased Noise in the Advanced ACTPol Receiver. Journal of Low Temperature Physics, 2020, 199, 762-770.	1.4	0
33	Study of quasi-particle dynamics using the optical pulse response of a superconducting resonator. Applied Physics Letters, 2021, 119, 022601.	3.3	Ο