
Lena Gustafsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8362511/publications.pdf Version: 2024-02-01

LENA CHISTAESSON

#	Article	IF	CITATIONS
1	Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 2013, 4, 1340.	5.8	1,034
2	Retention Forestry to Maintain Multifunctional Forests: A World Perspective. BioScience, 2012, 62, 633-645.	2.2	633
3	Threatened Plant, Animal, and Fungus Species in Swedish Forests: Distribution and Habitat Associations. Conservation Biology, 1994, 8, 718-731.	2.4	527
4	A major shift to the retention approach for forestry can help resolve some global forest sustainability issues. Conservation Letters, 2012, 5, 421-431.	2.8	328
5	REVIEW: Can retention forestry help conserve biodiversity? A metaâ€analysis. Journal of Applied Ecology, 2014, 51, 1669-1679.	1.9	314
6	Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. Journal of Applied Ecology, 2017, 54, 12-27.	1.9	289
7	Tree retention as a conservation measure in clear-cut forests of northern Europe: a review of ecological consequences. Scandinavian Journal of Forest Research, 2010, 25, 295-308.	0.5	188
8	Does forest continuity matter in conservation? – A study of epiphytic lichens and bryophytes in beech forests of southern Sweden. Biological Conservation, 2008, 141, 655-668.	1.9	146
9	Factors of Importance for the Epiphytic Vegetation of Aspen Populus tremula with Special Emphasis on Bark Chemistry and Soil Chemistry. Journal of Applied Ecology, 1995, 32, 412.	1.9	118
10	Retention of trees at final harvest—evaluation of a conservation technique using epiphytic bryophyte and lichen transplants. Biological Conservation, 1999, 90, 133-142.	1.9	117
11	Woodland key habitats in northern Europe: concepts, inventory and protection. Scandinavian Journal of Forest Research, 2010, 25, 309-324.	0.5	113
12	Retention as an integrated biodiversity conservation approach for continuous-cover forestry in Europe. Ambio, 2020, 49, 85-97.	2.8	106
13	Salvage logging in the world's forests: Interactions between natural disturbance and logging need recognition. Global Ecology and Biogeography, 2018, 27, 1140-1154.	2.7	97
14	How climate change adaptation and mitigation strategies can threaten or enhance the biodiversity of production forests: Insights from Sweden. Biological Conservation, 2016, 194, 11-20.	1.9	96
15	Bryophyte flora and vegetation of managed and virgin coniferous forests in South-West Sweden. Biological Conservation, 1988, 44, 283-300.	1.9	91
16	Spatial and temporal scales relevant for conservation of dead-wood associated species: current status and perspectives. Biodiversity and Conservation, 2014, 23, 513-535.	1.2	81
17	Threat Levels and Threats to Red-Listed Species in Swedish Forests. Conservation Biology, 1995, 9, 1629-1633.	2.4	78
18	Salvage logging effects on regulating and supporting ecosystem services — a systematic map. Canadian Journal of Forest Research, 2018, 48, 983-1000.	0.8	74

#	Article	IF	CITATIONS
19	Retention patches as potential refugia for bryophytes and lichens in managed forest landscapes. Biological Conservation, 2009, 142, 1125-1133.	1.9	70
20	Effects of forest-fuel harvesting on the amount of deadwood on clear-cuts. Scandinavian Journal of Forest Research, 2005, 20, 235-242.	0.5	69
21	Keeping pace with forestry: Multi-scale conservation in a changing production forest matrix. Ambio, 2020, 49, 1050-1064.	2.8	64
22	Biodiversity Conservation in Swedish Forests: Ways Forward for a 30-Year-Old Multi-Scaled Approach. Ambio, 2010, 39, 546-554.	2.8	60
23	Presence and Abundance of Redâ€Listed Plant Species in Swedish Forests. Conservation Biology, 2002, 16, 377-388.	2.4	59
24	Factors of Importance to Some Lichen Species of Deciduous Broad-Leaved Woods in Southern Sweden. Lichenologist, 1992, 24, 255-266.	0.5	57
25	Evaluation of Swedish woodland key habitats using red-listed bryophytes and lichens. Biodiversity and Conservation, 1999, 8, 1101-1114.	1.2	57
26	Presence and abundance of four epiphytic bryophytes in relation to density of aspen (Populus tremula) and other stand characteristics. Forest Ecology and Management, 1998, 107, 147-158.	1.4	56
27	Biological legacies buffer local species extinction after logging. Journal of Applied Ecology, 2014, 51, 53-62.	1.9	50
28	Forests Regenerating after Clear-Cutting Function as Habitat for Bryophyte and Lichen Species of Conservation Concern. PLoS ONE, 2011, 6, e18639.	1.1	48
29	Retaining trees for conservation at clearcutting has increased structural diversity in young Swedish production forests. Forest Ecology and Management, 2013, 304, 312-321.	1.4	47
30	Retention forestry in Sweden: driving forces, debate and implementation 1968–2003. Scandinavian Journal of Forest Research, 2015, 30, 154-173.	0.5	47
31	Red-listed species and indicators. Biological Conservation, 2000, 92, 35-43.	1.9	46
32	Salvage logging effects on regulating ecosystem services and fuel loads. Frontiers in Ecology and the Environment, 2020, 18, 391-400.	1.9	45
33	High occurrence of red-listed bryophytes and lichens in mature managed forests in boreal Sweden. Basic and Applied Ecology, 2004, 5, 123-129.	1.2	43
34	Hotspots in cold climate: Conservation value of woodland key habitats in boreal forests. Biological Conservation, 2011, 144, 2061-2067.	1.9	43
35	Rapid ecological response and intensified knowledge accumulation following a north European mega-fire. Scandinavian Journal of Forest Research, 2019, 34, 234-253.	O.5	43
36	A cross ontinental comparison of plant and beetle responses to retention of forest patches during timber harvest. Ecological Applications, 2016, 26, 2495-2506.	1.8	42

#	Article	IF	CITATIONS
37	Effects on ground vegetation of the application of wood ash to a Swedish Scots pine stand. Basic and Applied Ecology, 2001, 2, 233-241.	1.2	41
38	Plant conservation aspects of energy forestry — A new type of land use in Sweden. Forest Ecology and Management, 1987, 21, 141-161.	1.4	37
39	Semi-natural deciduous broadleaved woods in southern Sweden—habitat factors of importance to some bryophyte species. Biological Conservation, 1992, 59, 175-181.	1.9	36
40	Biodiversity Conservation in Southeast Asian Timber Concessions: a Critical Evaluation of Policy Mechanisms and Guidelines. Ecology and Society, 2008, 13, .	1.0	36
41	Half a century of multiple anthropogenic stressors has altered northern forest understory plant communities. Ecological Applications, 2019, 29, e01874.	1.8	36
42	A comparison of biological characteristics and distribution between Swedish threatened and non-threatened forest vascular plants. Ecography, 1994, 17, 39-49.	2.1	34
43	Conservation Goals and the Relative Importance of Costs and Benefits in Reserve Selection. Conservation Biology, 2008, 22, 1331-1339.	2.4	34
44	Research on retention forestry in Northern Europe. Ecological Processes, 2020, 9, .	1.6	34
45	Bryophytes and lichens in different types of forest set-asides in boreal Sweden. Forest Ecology and Management, 2007, 242, 374-390.	1.4	33
46	Nesting of solitary wasps and bees in natural and artificial holes in dead wood in young boreal forest stands. Insect Conservation and Diversity, 2015, 8, 493-504.	1.4	33
47	Red-listed and indicator lichens in woodland key habitats and production forests in Sweden. Canadian Journal of Forest Research, 2001, 31, 1617-1628.	0.8	32
48	Uncommon bryophytes in Swedish forests—key habitats and production forests compared. Forest Ecology and Management, 2004, 194, 11-22.	1.4	32
49	Low genetic variation in Swedish populations of the rare speciesVicia pisiformis (Fabaceae) revealed with rflp (rDNA) and RAPD. Plant Systematics and Evolution, 1994, 189, 133-148.	0.3	31
50	Lichen species richness on retained aspens increases with time since clear-cutting. Forest Ecology and Management, 2013, 293, 49-56.	1.4	31
51	Life history traits predict the response to increased light among 33 tropical rainforest tree species. Forest Ecology and Management, 2016, 362, 20-28.	1.4	31
52	Functional redundancy of multiple forest taxa along an elevational gradient: predicting the consequences of nonâ€random species loss. Journal of Biogeography, 2015, 42, 1383-1396.	1.4	28
53	Landscape properties affect biodiversity response to retention approaches in forestry. Journal of Applied Ecology, 2017, 54, 1627-1637.	1.9	25
54	Survival and vitality of a macrolichen 14 years after transplantation on aspen trees retained at clearcutting. Forest Ecology and Management, 2013, 291, 436-441.	1.4	23

#	Article	IF	CITATIONS
55	Introducing Intensively Managed Spruce Plantations in Swedish Forest Landscapes will Impair Biodiversity Decline. Forests, 2011, 2, 610-630.	0.9	22
56	Costâ€effective age structure and geographical distribution of boreal forest reserves. Journal of Applied Ecology, 2011, 48, 133-142.	1.9	22
57	Cost-effectiveness of conservation strategies implemented in boreal forests: The area selection process. Biological Conservation, 2009, 142, 614-624.	1.9	21
58	Economic development, institutions, and biodiversity loss at the global scale. Regional Environmental Change, 2016, 16, 445-457.	1.4	21
59	Natural Versus National Boundaries: the Importance of Considering Biogeographical Patterns in Forest Conservation Policy. Conservation Letters, 2015, 8, 50-57.	2.8	20
60	Does post-disturbance salvage logging affect the provision of ecosystem services? A systematic review protocol. Environmental Evidence, 2015, 4, .	1.1	18
61	Conservation values of certified-driven voluntary forest set-asides. Forest Ecology and Management, 2016, 375, 249-258.	1.4	17
62	Co-variation of lichens, bryophytes, saproxylic beetles and dead wood in Swedish boreal forests. Systematics and Biodiversity, 2010, 8, 247-256.	0.5	16
63	RAPD and morphological analysis of the rare plant speciesVicia pisiformis(Fabaceae). Biological Journal of the Linnean Society, 1997, 61, 325-343.	0.7	13
64	Fine-scale conservation planning outside of reserves: Cost-effective selection of retention patches at final harvest. Ecological Economics, 2011, 70, 771-777.	2.9	13
65	The value of information in conservation planning: Selecting retention trees for lichen conservation. Forest Ecology and Management, 2014, 318, 175-182.	1.4	13
66	Tree retention practices in boreal forests: what kind of future landscapes are we creating?. Scandinavian Journal of Forest Research, 2015, 30, 526-537.	0.5	13
67	Resilience impacts of a secondary disturbance: Metaâ€analysis of salvage logging effects on tree regeneration. Journal of Ecology, 2021, 109, 3224-3232.	1.9	12
68	Environmental policies to cope with novel disturbance regimes–steps to address a world scientists' warning to humanity. Environmental Research Letters, 2021, 16, 021003.	2.2	12
69	Interactions between local and global drivers determine longâ€ŧerm trends in boreal forest understorey vegetation. Global Ecology and Biogeography, 2021, 30, 1765-1780.	2.7	12
70	Fewer butterflies and a different composition of bees, wasps and hoverflies on recently burned compared to unburned clear-cuts, regardless of burn severity. Forest Ecology and Management, 2020, 463, 118033.	1.4	9
71	RAPD and morphological analysis of the rare plant species Vicia pisiformis (Fabaceae). Biological Journal of the Linnean Society, 1997, 61, 325-343.	0.7	8
72	Tree Species Composition Predicts Epiphytic Lichen Communities in an African Montane Rain Forest. Biotropica, 2015, 47, 542-549.	0.8	8

#	Article	IF	CITATIONS
73	Considering Future Potential Regarding Structural Diversity in Selection of Forest Reserves. PLoS ONE, 2016, 11, e0148960.	1.1	8
74	Epiphytic lichen responses to environmental change due to clearâ€cutting differ among tree taxa. Journal of Vegetation Science, 2018, 29, 1065-1074.	1.1	7
75	Biodiversity value of potential forest fertilisation stands, as assessed by red-listed and â€~signal' bryophytes and lichens. Silva Fennica, 2005, 39, .	0.5	7
76	Vegetation succession during the establishment of an energy forest on a sphagnum peat bog in eastâ€central Sweden. Scandinavian Journal of Forest Research, 1988, 3, 371-385.	0.5	6
77	Uncommon vascular plant species in an East entral Swedish forest areaâ€a comparison between young and old stands. Nordic Journal of Botany, 2000, 20, 51-60.	0.2	5
78	How reserve selection is affected by preferences in Swedish boreal forests. Forest Policy and Economics, 2014, 41, 40-50.	1.5	4
79	Disturbance interval modulates the starting point for vegetation succession. Ecology, 2021, 102, e03439.	1.5	4
80	Tree traits and canopy closure data from an experiment with 34 planted species native to Sabah, Borneo. Data in Brief, 2016, 6, 466-470.	0.5	3
81	What does FSC forest certification contribute to biodiversity conservation in relation to national legislation?. Journal of Environmental Management, 2021, 299, 113606.	3.8	3
82	Does the amount of trees retained at clearfelling of temperate and boreal forests influence biodiversity response?. Environmental Evidence, 2012, 1, 5.	1.1	2
83	Weak response of bryophyte assemblages to second commercial thinning in boreal spruce forest of south-central Sweden. Scandinavian Journal of Forest Research, 2016, 31, 19-28.	0.5	2
84	Burn severity and soil chemistry are weak drivers of early vegetation succession following a boreal megaâ€fire in a production forest landscape. Journal of Vegetation Science, 2021, 32, e12966.	1.1	2
85	The effectiveness of area protection to capture coastal bird richness and occurrence in the Swedish archipelago. Global Ecology and Conservation, 2019, 17, e00528.	1.0	1