
Emanuele Francesco Pecora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8362427/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antireflection High-Index Metasurfaces Combining Mie and Fabry-Pérot Resonances. ACS Photonics, 2019, 6, 453-459.	6.6	51
2	Broadband Antireflection Coatings Employing Multiresonant Dielectric Metasurfaces. ACS Photonics, 2018, 5, 4456-4462.	6.6	39
3	Deep-Ultraviolet Emitting AlGaN Multiple Quantum Well Graded-Index Separate-Confinement Heterostructures Grown by MBE on SiC Substrates. IEEE Photonics Journal, 2017, 9, 1-9.	2.0	27
4	Effect of indium in Al _{0.65} Ga _{0.35} N/Al _{0.8} Ga _{0.2} N MQWs for the development of deepâ€UV laser structures in the form of gradedâ€index separate confinement heterostructure (GRINSCH). Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1165-1169.	1.8	15
5	Deep-UV optical gain in AlGaN-based graded-index separate confinement heterostructure. Optical Materials Express, 2015, 5, 809.	3.0	17
6	Photonic–Plasmonic Coupling of GaAs Single Nanowires to Optical Nanoantennas. Nano Letters, 2014, 14, 2271-2278.	9.1	73
7	Size-dependent second-harmonic generation from gold nanoparticles. Physical Review B, 2014, 89, .	3.2	38
8	Enhanced second harmonic generation from InAs nano-wing structures on silicon. Nanoscale, 2013, 5, 10163.	5.6	15
9	Generation of second harmonic radiation from sub-stoichiometric silicon nitride thin films. Applied Physics Letters, 2013, 102, 141114.	3.3	21
10	Development of AlGaN-based graded-index-separate-confinement-heterostructure deep UV emitters by molecular beam epitaxy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	1.2	33
11	Photonic–plasmonic-coupled nanoantennas for polarization-controlled multispectral nanofocusing. Optics Letters, 2013, 38, 4861.	3.3	7
12	Sub-250 nm light emission and optical gain in AlGaN materials. Journal of Applied Physics, 2013, 113, .	2.5	24
13	Heteroepitaxial Growth of Ge Nanowires on Si Substrates. International Journal of Photoenergy, 2012, 2012, 1-5.	2.5	3
14	Temperature dependence and aging effects on silicon nanowires photoluminescence. Optics Express, 2012, 20, 1483.	3.4	16
15	Rare earth doped Si-rich ZnO for multiband near-infrared light emitting devices. Applied Physics Letters, 2012, 101, 191115.	3.3	27
16	Sub-250 nm room-temperature optical gain from AlGaN/AlN multiple quantum wells with strong band-structure potential fluctuations. Applied Physics Letters, 2012, 100, 061111.	3.3	52
17	Sub-250nm room temperature optical gain from AlGaN/AlN multiple quantum wells structures. , 2012, ,		0
18	Generation and Self-Organization of Bimetallic Pd/Au Nanoparticles on SiO2 by Sequential Sputtering Depositions and Annealing Processes. Journal of Nanoscience and Nanotechnology, 2012, 12, 8537-8545.	0.9	3

EMANUELE FRANCESCO PECORA

#	Article	IF	CITATIONS
19	Nanopatterning of silicon nanowires for enhancing visible photoluminescence. Nanoscale, 2012, 4, 2863.	5.6	30
20	Polarization Properties of Deep-Ultraviolet Optical Gain in Al-Rich AlGaN Structures. Applied Physics Express, 2012, 5, 032103.	2.4	13
21	Vertical "Ill–V―V-Shaped Nanomembranes Epitaxially Grown on a Patterned Si[001] Substrate and Their Enhanced Light Scattering. ACS Nano, 2012, 6, 10982-10991.	14.6	41
22	Ion beam-induced bending of silicon nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1074-1077.	2.7	9
23	Nanoscale amorphization, bending and recrystallization in silicon nanowires. Applied Physics A: Materials Science and Processing, 2011, 102, 13-19.	2.3	33
24	Kinetics of Si and Ge nanowires growth through electron beam evaporation. Nanoscale Research Letters, 2011, 6, 162.	5.7	28
25	Influence of O contamination and Au cluster properties on the structural features of Si nanowires. Thin Solid Films, 2010, 518, 2562-2564.	1.8	7
26	Heteroepitaxial Growth and Faceting of Ge Nanowires on Si(111) by Electron-Beam Evaporation. Electrochemical and Solid-State Letters, 2010, 13, K53.	2.2	18
27	Control of growth mechanisms and orientation in epitaxial Si nanowires grown by electron beam evaporation. Nanotechnology, 2009, 20, 135601.	2.6	42
28	Er-based materials for Si microphotonics. Optical Materials, 2009, 31, 1269-1274.	3.6	8
29	Experimental investigations of boron diffusion mechanisms in crystalline and amorphous silicon. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 154-155, 240-246.	3.5	3
30	Indirect Diffusion Mechanism of Boron Atoms in Crystalline and Amorphous Silicon. Materials Research Society Symposia Proceedings, 2008, 1070, 1.	0.1	1
31	Mechanism of Boron Diffusion in Amorphous Silicon. Physical Review Letters, 2008, 100, 155901.	7.8	44
32	Role of the Si excess on the excitation of Er doped SiOx. Applied Physics Letters, 2007, 90, 183102.	3.3	31