Wenhui Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8362214/publications.pdf Version: 2024-02-01

WENHUL FENC

#	Article	lF	CITATIONS
1	Free layer-dependent piezoelectricity of oxygen-doped MoS2 for the enhanced piezocatalytic hydrogen evolution from pure water. Applied Surface Science, 2022, 576, 151851.	6.1	31
2	Piezoelectric nanofoams with the interlaced ultrathin graphene confining Zn–N–C dipoles for efficient piezocatalytic H2 evolution under low-frequency vibration. Journal of Energy Chemistry, 2022, 69, 115-122.	12.9	11
3	Tuning Active Species in N-Doped Carbon with Fe/Fe ₃ C Nanoparticles for Efficient Oxygen Reduction Reaction. Inorganic Chemistry, 2022, 61, 3166-3175.	4.0	13
4	Co ₄ N–WN _{<i>x</i>} composite for efficient piezocatalytic hydrogen evolution. Dalton Transactions, 2022, 51, 7127-7134.	3.3	9
5	Insight into the piezo-photo coupling effect of PbTiO3/CdS composites for piezo-photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2021, 282, 119586.	20.2	184
6	Tuning the interfacial electronic structure <i>via</i> Au clusters for boosting photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2021, 9, 1759-1769.	10.3	33
7	Facet Engineering of Pd Nanocrystals for Enhancing Photocatalytic Hydrogenation: Modulation of the Schottky Barrier Height and Enrichment of Surface Reactants. ACS Applied Materials & Interfaces, 2021, 13, 13044-13054.	8.0	53
8	Hydroxyl/amino and Fe(III) co-grafted graphite carbon nitride for photocatalytic removal of volatile organic compounds. Environmental Research, 2021, 197, 111044.	7.5	19
9	Defective BiO2-x/BiOCl porous ultrathin nanosheets for efficient solar-light-driven photoreduction of Cr (VI). Materials Science in Semiconductor Processing, 2021, 128, 105781.	4.0	15
10	Bi4O5Br2 nanosheets with vertical aligned facets for efficient visible-light-driven photodegradation of BPA. Applied Catalysis B: Environmental, 2021, 286, 119937.	20.2	69
11	In situ etching growth of defective ZnS nanosheets anchored vertically on layered-double-hydroxide microflowers for accelerated photocatalytic activity. Applied Catalysis B: Environmental, 2021, 292, 120187.	20.2	33
12	Piezopotential-driven simulated electrocatalytic nanosystem of ultrasmall MoC quantum dots encapsulated in ultrathin N-doped graphene vesicles for superhigh H2 production from pure water. Nano Energy, 2020, 75, 104990.	16.0	64
13	Atomically thin ZnS nanosheets: Facile synthesis and superior piezocatalytic H2 production from pure H2O. Applied Catalysis B: Environmental, 2020, 277, 119250.	20.2	124
14	Tuning piezoelectric field for optimizing the coupling effect of piezo-photocatalysis. Applied Catalysis B: Environmental, 2020, 278, 119291.	20.2	89
15	Molten-salt-mediated synthesis of bulk W doped BiOCl with highly enhanced visible-light photocatalytic performances. Applied Surface Science, 2019, 495, 143595.	6.1	19
16	Z-scheme system of WO3@MoS2/CdS for photocatalytic evolution H2: MoS2 as the charge transfer mode switcher, electron-hole mediator and cocatalyst. Applied Catalysis B: Environmental, 2019, 259, 118073.	20.2	55
17	Crafty design of chemical bonding to construct MoO2/CdS nanorod photocatalysts for boosting hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 24228-24236.	7.1	17
18	TiO2 @ MoSe2 line-to-face heterostructure: An advanced photocatalyst for highly efficient reduction of Cr (VI). Ceramics International, 2019, 45, 18065-18072.	4.8	19

Wenhui Feng

#	Article	IF	CITATIONS
19	A facile method for regulating the charge transfer route of WO3/CdS in high-efficiency hydrogen production. Applied Catalysis B: Environmental, 2019, 244, 529-535.	20.2	62
20	CdS nanorods decorated with inexpensive NiCd bimetallic nanoparticles as efficient photocatalysts for visible-light-driven photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 243, 229-235.	20.2	89
21	Ag-modified ultrathin Bi ₁₂ O ₁₇ Cl ₂ nanosheets: photo-assisted Ag exfoliation synthesis and enhanced photocatalytic performance. Journal of Materials Chemistry A, 2018, 6, 9200-9208.	10.3	53
22	Enhanced charge carrier separation to improve hydrogen production efficiency by ferroelectric spontaneous polarization electric field. Applied Catalysis B: Environmental, 2018, 227, 322-329.	20.2	91
23	Rational design and facile in situ coupling non-noble metal Cd nanoparticles and CdS nanorods for efficient visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018, 236, 233-239.	20.2	67
24	One-pot construction of 1D/2D Zn1-Cd S/D-ZnS(en)0.5 composites with perfect heterojunctions and their superior visible-light-driven photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018, 220, 324-336.	20.2	64
25	Well dispersed MoC quantum dots in ultrathin carbon films as efficient co-catalysts for photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2018, 6, 18979-18986.	10.3	72
26	Defect state of indium-doped bismuth molybdate nanosheets for enhanced photoreduction of chromium(<scp>vi</scp>) under visible light illumination. Dalton Transactions, 2018, 47, 8110-8120.	3.3	25
27	Hydrogen Production from Pure Water via Piezoelectricâ€assisted Visibleâ€light Photocatalysis of CdS Nanorod Arrays. ChemCatChem, 2018, 10, 3397-3401.	3.7	86
28	Simultaneous Realization of Enhanced Photoactivity and Promoted Photostability by Multilayered MoS ₂ Coating on CdS Nanowire Structure via Compact Coating Methodology. ACS Applied Materials & Interfaces, 2017, 9, 6950-6958.	8.0	110
29	In situ construction of a novel Bi/CdS nanocomposite with enhanced visible light photocatalytic performance. Applied Catalysis B: Environmental, 2017, 206, 510-519.	20.2	81
30	Construction of dual-channel for optimizing Z-scheme photocatalytic system. Applied Catalysis B: Environmental, 2017, 212, 80-88.	20.2	75
31	Near-infrared-activated NaYF ₄ :Yb ³⁺ , Er ³⁺ /Au/CdS for H ₂ production via photoreforming of bio-ethanol: plasmonic Au as light nanoantenna, energy relay, electron sink and co-catalyst. Journal of Materials Chemistry A, 2017, 5, 10311-10320.	10.3	65
32	Grain boundary engineering in organic–inorganic hybrid semiconductor ZnS(en) _{0.5} for visible-light photocatalytic hydrogen production. Journal of Materials Chemistry A, 2017, 5, 1387-1393.	10.3	55
33	Enhanced selectivity of methane production for photocatalytic reduction by the piezoelectric effect. Chemical Communications, 2017, 53, 9765-9768.	4.1	32
34	An in situ gold-decorated 3D branched ZnO nanocomposite and its enhanced absorption and photo-oxidation performance for removing arsenic from water. RSC Advances, 2016, 6, 112877-112884.	3.6	7
35	Dual-defective strategy directing in situ assembly for effective interfacial contacts in MoS ₂ cocatalyst/In ₂ S ₃ light harvester layered photocatalysts. Journal of Materials Chemistry A, 2016, 4, 13980-13988.	10.3	55
36	Predictive model for optimizing the near-field electromagnetic energy transfer in plasmonic nanostructure-involved photocatalysts. Applied Catalysis B: Environmental, 2016, 186, 143-150.	20.2	20

Wenhui Feng

#	Article	IF	CITATIONS
37	Defect Engineering and Phase Junction Architecture of Wide-Bandgap ZnS for Conflicting Visible Light Activity in Photocatalytic H ₂ Evolution. ACS Applied Materials & Interfaces, 2015, 7, 13915-13924.	8.0	193
38	¹ Rational design of a charge shunt: modification upon crystal facet engineering of semiconductor photocatalysts. Chemical Communications, 2015, 51, 11186-11189.	4.1	22
39	Synthesis of single-crystal-like TiO2 hierarchical spheres with exposed {101} and {111} facets via lysine-inspired method. Applied Surface Science, 2015, 353, 714-722.	6.1	14
40	Construction of Teethlike Homojunction BiOCl (001) Nanosheets by Selective Etching and Its High Photocatalytic Activity. ACS Applied Materials & Interfaces, 2014, 6, 18423-18428.	8.0	77
41	Defect self-doped TiO ₂ for visible light activity and direct noble metal anchoring. Physical Chemistry Chemical Physics, 2014, 16, 21876-21881.	2.8	31
42	Controllable Tuning Various Ratios of ZnO Polar Facets by Crystal Seed-Assisted Growth and Their Photocatalytic Activity. Crystal Growth and Design, 2014, 14, 2179-2186.	3.0	68
43	Constructing atomic layer g-C ₃ N ₄ –CdS nanoheterojunctions with efficiently enhanced visible light photocatalytic activity. Physical Chemistry Chemical Physics, 2014, 16, 21280-21288	2.8	147