Yuanyuan Shang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8361959/publications.pdf

Version: 2024-02-01

62 papers

3,001 citations

30 h-index 54 g-index

62 all docs

62 docs citations

times ranked

62

4654 citing authors

#	Article	IF	CITATIONS
1	Core-Double-Shell, Carbon Nanotube@Polypyrrole@MnO ₂ Sponge as Freestanding, Compressible Supercapacitor Electrode. ACS Applied Materials & Samp; Interfaces, 2014, 6, 5228-5234.	4.0	298
2	MWCNT/V ₂ O ₅ Core/Shell Sponge for High Areal Capacity and Power Density Li-lon Cathodes. ACS Nano, 2012, 6, 7948-7955.	7.3	236
3	Superâ€Stretchable Springâ€Like Carbon Nanotube Ropes. Advanced Materials, 2012, 24, 2896-2900.	11.1	193
4	Graphene Nanoribbon Aerogels Unzipped from Carbon Nanotube Sponges. Advanced Materials, 2014, 26, 3241-3247.	11.1	151
5	Synthesis and characterization of a new hierarchical reinforcement by chemically grafting graphene oxide onto carbon fibers. Journal of Materials Chemistry, 2012, 22, 18748.	6.7	120
6	A high-capacity lithium–air battery with Pd modified carbon nanotube sponge cathode working in regular air. Carbon, 2013, 62, 288-295.	5.4	116
7	Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode. Nano Research, 2014, 7, 209-218.	5.8	115
8	Application-Driven Carbon Nanotube Functional Materials. ACS Nano, 2021, 15, 7946-7974.	7.3	102
9	Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions. Nano Energy, 2015, 12, 401-409.	8.2	100
10	Macroscopic, Flexible, High-Performance Graphene Ribbons. ACS Nano, 2013, 7, 10225-10232.	7.3	95
11	Overtwisted, Resolvable Carbon Nanotube Yarn Entanglement as Strain Sensors and Rotational Actuators. ACS Nano, 2013, 7, 8128-8135.	7.3	94
12	Highly Twisted Double-Helix Carbon Nanotube Yarns. ACS Nano, 2013, 7, 1446-1453.	7.3	88
13	Elastic improvement of carbon nanotube sponges by depositing amorphous carbon coating. Carbon, 2014, 76, 19-26.	5.4	78
14	A flexible gas sensor based on single-walled carbon nanotube-Fe2O3 composite film. Applied Surface Science, 2017, 405, 405-411.	3.1	75
15	Stretchable and transparent electroluminescent device driven by triboelectric nanogenerator. Nano Energy, 2019, 58, 410-418.	8.2	68
16	Design and understanding of core/branch-structured VS ₂ nanosheets@CNTs as high-performance anode materials for lithium-ion batteries. Nanoscale, 2019, 11, 13343-13353.	2.8	66
17	High-strength carbon nanotube fibers by twist-induced self-strengthening. Carbon, 2017, 119, 47-55.	5.4	59
18	Multifunctional graphene sheet–nanoribbon hybrid aerogels. Journal of Materials Chemistry A, 2014, 2, 14994-15000.	5.2	54

#	Article	IF	Citations
19	Meter-Long Spiral Carbon Nanotube Fibers Show Ultrauniformity and Flexibility. Nano Letters, 2016, 16, 1768-1775.	4.5	51
20	Highly Sensitive, Flexible MEMS Based Pressure Sensor with Photoresist Insulation Layer. Small, 2017, 13, 1702422.	5.2	50
21	Highly flexible all-solid-state supercapacitors based on carbon nanotube/polypyrrole composite films and fibers. RSC Advances, 2016, 6, 62062-62070.	1.7	47
22	Elastic carbon nanotube straight yarns embedded with helical loops. Nanoscale, 2013, 5, 2403.	2.8	44
23	Helical graphene oxide fibers as a stretchable sensor and an electrocapillary sucker. Nanoscale, 2016, 8, 10659-10668.	2.8	44
24	High-performance Li-ion batteries based on graphene quantum dot wrapped carbon nanotube hybrid anodes. Nano Research, 2020, 13, 1044-1052.	5.8	44
25	Flexible and multi-form solid-state supercapacitors based on polyaniline/graphene oxide/CNT composite films and fibers. Diamond and Related Materials, 2019, 92, 198-207.	1.8	40
26	Sustainable power generation for at least one month from ambient humidity using unique nanofluidic diode. Nature Communications, 2022, 13 , .	5.8	39
27	Largeâ€Deformation, Multifunctional Artificial Muscles Based on Singleâ€Walled Carbon Nanotube Yarns. Advanced Engineering Materials, 2015, 17, 14-20.	1.6	36
28	A General Method for the Chemical Synthesis of Largeâ€Scale, Seamless Transition Metal Dichalcogenide Electronics. Advanced Materials, 2018, 30, e1706215.	11.1	36
29	Soft and wrinkled carbon membranes derived from petals for flexible supercapacitors. Scientific Reports, 2017, 7, 45378.	1.6	33
30	Water-responsive helical graphene-oxide fibers incorporating a continuous carbon nanotube network. Carbon, 2018, 132, 394-400.	5.4	32
31	Interconnected CuS nanowalls with rough surfaces grown on nickel foam as high-performance electrodes for supercapacitors. RSC Advances, 2016, 6, 59976-59983.	1.7	31
32	An adhesive and self-healable hydrogel with high stretchability and compressibility for human motion detection. Composites Science and Technology, 2021, 213, 108948.	3.8	31
33	Highly Stretchable and Compressible Carbon Nanofiber–Polymer Hydrogel Strain Sensor for Human Motion Detection. Macromolecular Materials and Engineering, 2020, 305, 1900813.	1.7	28
34	Sulfur-vacancies promoted performance of hierarchical NiCo2S4 nanotubes through electrospinning for supercapacitors. Journal of Materials Science, 2021, 56, 9368-9381.	1.7	27
35	High performance carbon nanotube/polymer composite fibers and water-driven actuators. Composites Science and Technology, 2021, 206, 108676.	3.8	25
36	Double layers combined with MXene and in situ grown NiAl-LDH arrays on nickel foam for enhanced asymmetric supercapacitors. Ionics, 2022, 28, 2967-2977.	1.2	24

#	Article	lF	CITATIONS
37	Efficient purification of single-walled carbon nanotube fibers by instantaneous current injection and acid washing. RSC Advances, 2016, 6, 97865-97872.	1.7	18
38	Improving Carbon Nanotubeâ€Silicon Solar Cells by Solution Processable Metal Chlorides. Solar Rrl, 2019, 3, 1900147.	3.1	18
39	Mechanical force-induced assembly of one-dimensional nanomaterials. Nano Research, 2020, 13, 1191-1204.	5.8	16
40	High-loading Fe2O3/SWNT composite films for lithium-ion battery applications. Nanotechnology, 2017, 28, 345703.	1.3	14
41	Synthesis of V ₂ O ₅ microspheres by spray pyrolysis as cathode material for supercapacitors. Materials Research Express, 2018, 5, 036306.	0.8	13
42	Nitrogen-doped carbon nanotube supported double-shelled hollow composites for asymmetric supercapacitors. New Journal of Chemistry, 2018, 42, 150-160.	1.4	13
43	Intrinsically flexible CNT-TiO2-Interlaced film for NO sensing at room temperature. Applied Surface Science, 2022, 579, 152172.	3.1	13
44	A GQD-based composite film as photon down-converter in CNT/Si solar cells. Nano Research, 2021, 14, 3893-3899.	5.8	12
45	Synergistic CNFs/CoS ₂ /MoS ₂ Flexible Films with Unprecedented Selectivity for NO Gas at Room Temperature. ACS Applied Materials & Samp; Interfaces, 2020, 12, 29778-29786.	4.0	11
46	Carbon Nanotube-Coupled Seaweed-like Cobalt Sulfide as a Dual-Functional Catalyst for Overall Water Splitting. ACS Applied Materials & Samp; Interfaces, 2022, 14, 30847-30856.	4.0	10
47	Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes. Nano Research, 2012, 5, 595-604.	5.8	9
48	Flexible and highly responsive photodetectors based on heterostructures of MoS ₂ and all-carbon transistors. Nanotechnology, 2021, 32, 315209.	1.3	9
49	An etch-doping strategy: cobalt–iron bimetallic phosphide as a bifunctional electrocatalyst for highly efficient water splitting. New Journal of Chemistry, 2021, 45, 8527-8534.	1.4	9
50	Carbon Nanotube/Polymer Coaxial Cables with Strong Interface for Damping Composites and Stretchable Conductors. Advanced Functional Materials, 2022, 32, .	7.8	9
51	Highly Stretchable Carbon Nanotube Fibers with Tunable and Stable Light Emission. Advanced Engineering Materials, 2019, 21, 1801126.	1.6	8
52	Flexible and Stable Carbon Nanotube Film Strain Sensors with Self-Derived Integrated Electrodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 55600-55610.	4.0	8
53	Layered Niâ^'Coâ^'P Electrode Synthesized by CV Electrodeposition for Hydrogen Evolution at Large Currents. ChemCatChem, 2021, 13, 3619-3627.	1.8	6
54	Space-confined synthesis of SWNT bundles wrapped by MoS2 crystalline layers as flexible sensors and detectors. Carbon, 2022, 195, 19-26.	5 . 4	6

#	Article	IF	CITATIONS
55	Bubble-promoted assembly of hierarchical, porous Ag2S nanoparticle membranes. Journal of Materials Chemistry, 2012, 22, 24721.	6.7	5
56	Well dispersive Ni nanoparticles embedded in core-shell supports as efficient catalysts for 4-nitrophenol reduction. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	5
57	Carbon nanotube spiderweb promoted growth of hierarchical transition metal dichalcogenide nanostructures for seamless devices. Nanotechnology, 2020, 31, 365601.	1.3	5
58	Flexible FeS@Fe ₂ O ₃ /CNT composite films as self-supporting anodes for high-performance lithium-ion batteries. Nanotechnology, 2021, 32, 285404.	1.3	4
59	High-efficiency CNT-Si solar cells based on a collaborative system enabled by oxide penetration. Nano Research, 2022, 15, 2497-2504.	5.8	4
60	Carbon Nanotubes: Superâ€Stretchable Springâ€Like Carbon Nanotube Ropes (Adv. Mater. 21/2012). Advanced Materials, 2012, 24, 2935-2935.	11.1	3
61	Stretchable Carbon Nanotubeâ€Polymer Composites with Homogenous Deformation and as Liquid Droplet Sensors. Advanced Materials Interfaces, 2019, 6, 1901354.	1.9	2
62	A soft and recyclable carbon nanotube/carbon nanofiber hybrid membrane for oil/water separation. Journal of Applied Polymer Science, 0, , 52133.	1.3	1