
MarÃ-lia Pivetta Rippe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8361889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 85, 57-65.	1.5	153
2	Resin Bonding to a Hybrid Ceramic: Effects of Surface Treatments and Aging. Operative Dentistry, 2016, 41, 171-178.	0.6	70
3	Clinical performance and failure modes of pulpless teeth restored with posts: a systematic review. Brazilian Oral Research, 2017, 31, e64.	0.6	69
4	Mechanical behavior of a Y-TZP ceramic for monolithic restorations: effect of grinding and low-temperature aging. Materials Science and Engineering C, 2016, 63, 70-77.	3.8	63
5	Surface micro-morphology, phase transformation, and mechanical reliability of ground and aged monolithic zirconia ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 849-856.	1.5	55
6	Fatigue limit of polycrystalline zirconium oxide ceramics: Effect of grinding and low-temperature aging. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 61, 45-54.	1.5	53
7	Comparison of different low-temperature aging protocols: its effects on the mechanical behavior of Y-TZP ceramics. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 324-330.	1.5	45
8	Inlays Made From a Hybrid Material: Adaptation and Bond Strengths. Operative Dentistry, 2015, 40, E83-E91.	0.6	44
9	Fatigue strength of yttria-stabilized zirconia polycrystals: Effects of grinding, polishing, glazing, and heat treatment. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 75, 512-520.	1.5	37
10	Fatigue failure load of an adhesively-cemented lithium disilicate glass-ceramic: Conventional ceramic etching vs etch & amp; prime one-step primer. Dental Materials, 2018, 34, 1134-1143.	1.6	37
11	Mechanical performance of Y-TZP monolithic ceramic after grinding and aging: Survival estimates and fatigue strength. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87, 288-295.	1.5	36
12	Effect of Resin Luting Systems and Alumina Particle Air Abrasion on Bond Strength to Zirconia. Operative Dentistry, 2018, 43, 282-290.	0.6	35
13	How does hydrofluoric acid etching affect the cyclic load-to-failure of lithium disilicate restorations?. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 87, 306-311.	1.5	24
14	Influence of finishing/polishing on the fatigue strength, surface topography, and roughness of an yttrium-stabilized tetragonal zirconia polycrystals subjected to grinding. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 93, 222-229.	1.5	23
15	Are posts necessary for the restoration of root filled teeth with limited tissue loss? A structured review of laboratory and clinical studies. International Endodontic Journal, 2016, 49, 827-835.	2.3	22
16	Different Methods for Inlay Production: Effect on Internal and Marginal Adaptation, Adjustment Time, and Contact Point. Operative Dentistry, 2017, 42, 436-444.	0.6	22
17	Mechanical behavior of yttria-stabilized tetragonal zirconia polycrystal: Effects of different aging regimens. Brazilian Oral Research, 2017, 31, e94.	0.6	19
18	Polishing of Ground Y-TZP Ceramic is Mandatory for Improving the Mechanical Behavior. Brazilian Dental Journal, 2018, 29, 483-491.	0.5	19

#	Article	IF	CITATIONS
19	Effect of root canal preparation, type of endodontic post and mechanical cycling on root fracture strength. Journal of Applied Oral Science, 2014, 22, 165-173.	0.7	18
20	Influence of Endodontic Treatment and Retreatment on the Fatigue Failure Load, Numbers of Cycles for Failure, and Survival Rates of Human Canine Teeth. Journal of Endodontics, 2017, 43, 2081-2087.	1.4	18
21	Effect of zirconia surface treatment, resin cement and aging on the load-bearing capacity under fatigue of thin simplified full-contour Y-TZP restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 97, 21-29.	1.5	18
22	In-lab simulation of CAD/CAM milling of lithium disilicate glass-ceramic specimens: Effect on the fatigue behavior of the bonded ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 121, 104604.	1.5	18
23	Load-bearing capacity under fatigue and FEA analysis of simplified ceramic restorations supported by Peek or zirconia polycrystals as foundation substrate for implant purposes. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 123, 104760.	1.5	18
24	Evaluation of Tensile Retention of Y-TZP Crowns After Long-term Aging: Effect of the Core Substrate and Crown Surface Conditioning. Operative Dentistry, 2014, 39, 619-626.	0.6	17
25	Low-fusing porcelain glaze application does not damage the fatigue strength of Y-TZP. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 99, 198-205.	1.5	17
26	Retentive Strength of Y-TZP Crowns: Comparison of Different Silica Coating Methods on the Intaglio Surfaces. Operative Dentistry, 2017, 42, E121-E133.	0.6	15
27	Evaluation of Tensile Retention of Y-TZP Crowns Cemented on Resin Composite Cores: Effect of the Cement and Y-TZP Surface Conditioning. Operative Dentistry, 2015, 40, E1-E10.	0.6	13
28	Multi-step adhesive cementation versus one-step adhesive cementation: push-out bond strength between fiber post and root dentin before and after mechanical cycling. General Dentistry, 2011, 59, e185-91.	0.4	13
29	Effect of Grinding and Multi-Stimuli Aging on the Fatigue Strength of a Y-TZP Ceramic. Brazilian Dental Journal, 2018, 29, 60-67.	0.5	11
30	Surface treatments of a glass-fiber reinforced composite: Effect on the adhesion to a composite resin. Journal of Prosthodontic Research, 2020, 64, 301-306.	1.1	10
31	Fatigue performance of fully-stabilized zirconia polycrystals monolithic restorations: The effects of surface treatments at the bonding surface. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103962.	1.5	9
32	Surface treatments and its effects on the fatigue behavior of a 5% mol yttria partially stabilized zirconia material. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 120, 104543.	1.5	8
33	Surface agents' influence on the flexural strength of bilaminated ceramics. Brazilian Oral Research, 2013, 27, 311-317.	0.6	7
34	Air-abrasion using new silica-alumina powders containing different silica concentrations: Effect on the microstructural characteristics and fatigue behavior of a Y-TZP ceramic. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98, 11-19.	1.5	7
35	Root Canal Filling: Fracture Strength of Fiber-Reinforced Composite-Restored Roots and Finite Element Analysis. Brazilian Dental Journal, 2013, 24, 619-625.	0.5	6
36	Influence of zirconia surface treatments on resin cement bonding and phase transformation. Journal of Adhesion Science and Technology, 2017, 31, 1671-1682.	1.4	5

#	Article	IF	CITATIONS
37	Survival rate and load to failure of premolars restored with inlays: An evaluation of different inlay fabrication methods. Journal of Prosthetic Dentistry, 2019, 121, 292-297.	1.1	5
38	Fatigue Failure Load of a Bonded Simplified Monolithic Feldspathic Ceramic: Influence of Hydrofluoric Acid Etching and Thermocycling. Operative Dentistry, 2020, 45, E21-E31.	0.6	5
39	Surface Treatments and Adhesives Used to Increase the Bond Strength Between Polyetheretherketone and Resin-based Dental Materials: A Scoping Review Journal of Adhesive Dentistry, 2022, 24, 233-245.	0.3	5
40	Fatigue Failure Load of Restored Premolars: Effect of Etching the Intaglio Surface of Ceramic Inlays With Hydrofluoric Acid at Different Concentrations. Operative Dentistry, 2018, 43, E81-E91.	0.6	4
41	Influence of zirconia surface treatments of a bilayer restorative assembly on the fatigue performance. Journal of Prosthodontic Research, 2021, 65, 162-170.	1.1	4
42	Silicone Disclosing Material used after Ceramic Surface Treatment Reduces Bond Strength. Journal of Adhesive Dentistry, 2016, 18, 545-554.	0.3	3
43	The influence of roughness on the resistance to impact of different CAD/CAM dental ceramics. Brazilian Dental Journal, 2021, 32, 54-65.	0.5	3
44	Fatigue behavior and colorimetric differences of a porcelain-veneered zirconia: effect of quantity and position of specimens during firing. Journal of Prosthodontic Research, 2021, 65, 202-207.	1.1	2
45	Does acid etching prior to applying universal adhesives affect the bond strength of glass fiber post to root dentin?. International Journal of Adhesion and Adhesives, 2021, 105, 102795.	1.4	2
46	Simulation of CAD/CAM milling on lithium disilicate: Mechanical and topographic analyses of surface grinding different protocols. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 132, 105278.	1.5	2
47	Effect of the frequency of mechanical pulses for fatigue aging testing on push-out bond strength between glass fiber posts and root dentin. Journal of Adhesion Science and Technology, 2016, 30, 1243-1252.	1.4	1
48	Effect of different impression methods and ceramic materials on adaptation of inlays. Brazilian Dental Science, 2018, 21, 296.	0.1	1
49	Different Etching Times of a One-step Ceramic Primer: Effect on the Resin Bond Strength Durability to a CAD/CAM Lithium-Disilicate Glass-Ceramic. Journal of Adhesive Dentistry, 2021, 23, 133-143.	0.3	1
50	Does Adhesive Luting Reinforce the Mechanical Properties of Dental Ceramics Used as Restorative Materials? A Systematic Review and Meta-Analysis Journal of Adhesive Dentistry, 2022, 24, 209-222.	0.3	1
51	Canal Preparation and Filling Techniques do not Influence the Fracture Resistance of Extensively Damaged Teeth. Brazilian Dental Journal, 2014, 25, 129-135.	0.5	Ο
52	In vitro methods to evaluate the mechanical behavior of teeth restored with post and core: a structured review. Revista Da Faculdade De Odontologia (Universidade De Passo Fundo), 2017, 22, .	0.2	0
53	The number of specimens in a furnace affects the biaxial flexural strength of veneered zirconia specimens after sintering. Journal of Adhesion Science and Technology, 2021, 35, 663-672.	1.4	0
54	New Materials for CAD/CAM Systems: Resin-Based Composites, Polymer-Infiltrated Ceramic Network, Zirconia Painforced Lithium Silicate, and High Translucent Zirconia, 2020, 211,233		0

Zirconia-Reinforced Lithium Silicate, and High Translucent Zirconia. , 2020, , 211-233.