Naru Babaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8361737/publications.pdf

Version: 2024-02-01

471509 315739 1,509 49 17 38 citations h-index g-index papers 49 49 49 1882 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature, 2005, 435, 220-223.	27.8	682
2	Prevention and Treatment of Obesity, Insulin Resistance, and Diabetes by Bile Acid–Binding Resin. Diabetes, 2007, 56, 239-247.	0.6	158
3	Age-related association of MHC class I chain-related gene A (MICA) with type 1 (insulin-dependent) diabetes mellitus. Human Immunology, 2000, 61, 624-629.	2.4	70
4	Clinical and genetic characteristics of patients with autoimmune thyroid disease with anti-islet autoimmunity. Metabolism: Clinical and Experimental, 2011, 60, 761-766.	3.4	40
5	Analysis of hepatic gene expression profile in a spontaneous mouse model of type 2 diabetes under a high sucrose diet. Endocrine Journal, 2013, 60, 261-274.	1.6	40
6	Effects of dosage and dosing frequency on the efficacy and safety of highâ€dose metformin in Japanese patients with type 2 diabetes mellitus. Journal of Diabetes Investigation, 2018, 9, 587-593.	2.4	31
7	Genetic Basis of Type 1 Diabetes: Similarities and Differences between East and West. Review of Diabetic Studies, 2008, 5, 64-72.	1.3	29
8	βâ€Cell failure in diabetes: Common susceptibility and mechanisms shared between typeÂ1 and typeÂ2 diabetes. Journal of Diabetes Investigation, 2021, 12, 1526-1539.	2.4	27
9	Association of I27L Polymorphism of Hepatocyte Nuclear Factor-1α Gene with High-Density Lipoprotein Cholesterol Level. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 2548-2551.	3.6	26
10	The Stages of Type 1A Diabetes. Annals of the New York Academy of Sciences, 2005, 1051, 194-204.	3.8	26
11	Food hardness as environmental factor in development of type 2 diabetes. Diabetes Research and Clinical Practice, 2006, 74, 1-7.	2.8	26
12	Insulin Transactivator MafA Regulates Intrathymic Expression of Insulin and Affects Susceptibility to Type 1 Diabetes. Diabetes, 2010, 59, 2579-2587.	0.6	26
13	Organ Specificity in Autoimmune Diseases: Thyroid and Islet Autoimmunity in Alopecia Areata. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1976-1983.	3.6	25
14	Susceptibility to streptozotocin-induced diabetes is mapped to mouse chromosome 11. Biochemical and Biophysical Research Communications, 2005, 328, 158-164.	2.1	23
15	Insulin deficiency with and without glucagon: A comparative study between total pancreatectomy and type 1 diabetes. Journal of Diabetes Investigation, 2018, 9, 1084-1090.	2.4	23
16	Comparison of insulin autoantibody: polyethylene glycol and microâ€IAA 1â€day and 7â€day assays. Diabetes/Metabolism Research and Reviews, 2009, 25, 665-670.	4.0	20
17	Improvement of liver function parameters in patients with type 2 diabetes treated with thiazolidinediones. Metabolism: Clinical and Experimental, 2005, 54, 529-532.	3.4	18
18	Relationship of continuous glucose monitoring-related metrics with HbA1c and residual \hat{l}^2 -cell function in Japanese patients with type 1 diabetes. Scientific Reports, 2021, 11, 4006.	3.3	18

#	Article	IF	CITATIONS
19	Insulin secretion to glucose as well as nonglucose stimuli is impaired in spontaneously diabetic Nagoya-Shibata-Yasuda mice. Metabolism: Clinical and Experimental, 2001, 50, 1282-1285.	3.4	17
20	Murine High Specificity/Sensitivity Competitive Europium Insulin Autoantibody Assay. Diabetes Technology and Therapeutics, 2009, 11, 227-233.	4.4	17
21	Genetics and pathogenesis of type 1 diabetes: prospects for prevention and intervention. Journal of Diabetes Investigation, $2011, 2, 415-420$.	2.4	17
22	Paternal-maternal effects on phenotypic characteristics in spontaneously diabetic Nagoya-Shibata-Yasuda mice. Metabolism: Clinical and Experimental, 2000, 49, 651-656.	3.4	13
23	Glucose Metabolism After Pancreatectomy: Opposite Extremes Between Pancreaticoduodenectomy and Distal Pancreatectomy. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e2203-e2214.	3.6	12
24	Evidence for Cd101 but not Fcgr1 as candidate for type 1 diabetes locus, ldd10. Biochemical and Biophysical Research Communications, 2005, 331, 536-542.	2.1	11
25	Sequence Analysis of Tnf as a Candidate for Idd16. Autoimmunity, 2002, 35, 63-66.	2.6	9
26	Flash glucose monitoring in typeÂ1 diabetes: A comparison with selfâ€monitoring blood glucose. Journal of Diabetes Investigation, 2020, 11, 1222-1229.	2.4	9
27	Mapping and promoter sequencing of HNF- $1\hat{l}^2$ gene in diabetes-prone and -resistant mice. Diabetes Research and Clinical Practice, 2001, 53, 67-71.	2.8	8
28	Common genetic basis between type 1 and type 2 diabetes mellitus indicated by interview-based assessment of family history. Diabetes Research and Clinical Practice, 2004, 66, S91-S95.	2.8	8
29	High Degree of Mitochondrial 3243 Mutation in Gastric Biopsy Specimen in a Patient With MELAS and Diabetes Complicated by Marked Gastrointestinal Abnormalities. Diabetes Care, 2003, 26, 2219-2219.	8.6	7
30	Sequence Analysis of Candidate Genes for Common Susceptibility to Type 1 and Type 2 Diabetes in Mice Endocrine Journal, 2001, 48, 241-247.	1.6	6
31	Genetic dissection of susceptibility genes for diabetes and related phenotypes on mouse chromosome 14 by means of congenic strains. BMC Genetics, 2014, 15, 93.	2.7	6
32	Common phenotype and different non-HLA genes in Graves' disease and alopecia areata. Human Immunology, 2017, 78, 185-189.	2.4	6
33	Contribution of Asian Haplotype of KCNJ18 to Susceptibility to and Ethnic Differences in Thyrotoxic Periodic Paralysis. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 6338-6344.	3.6	6
34	Case report: schwannoma arising from the unilateral adrenal area with bilateral hyperaldosteronism. BMC Endocrine Disorders, 2017, 17, 74.	2.2	5
35	Congenic mapping and candidate gene analysis for streptozotocin-induced diabetes susceptibility locus on mouse chromosome 11. Mammalian Genome, 2018, 29, 273-280.	2.2	5
36	Early-Onset Diabetes Mellitus in a Patient With a Chromosome 13q34qter Microdeletion Including IRS2. Journal of the Endocrine Society, 2018, 2, 1207-1213.	0.2	5

#	Article	IF	CITATIONS
37	Clinical and genetic determinants of urinary glucose excretion in patients with diabetes mellitus. Journal of Diabetes Investigation, 2021, 12, 728-737.	2.4	5
38	Associations between genetic loci related to lean mass and body composition in type 2 diabetes. Geriatrics and Gerontology International, 2021, 21, 932-938.	1.5	5
39	Dose Effect and Mode of Inheritance of Diabetogenic Gene on Mouse Chromosome 11. Journal of Diabetes Research, 2013, 2013, 1-6.	2.3	4
40	MHC-Linked Susceptibility to Type 1 Diabetes in the NOD Mouse: Further Localization of Idd16 by Subcongenic Analysis. Annals of the New York Academy of Sciences, 2006, 1079, 118-121.	3.8	3
41	Oncocytic Adrenocortical Carcinoma With Low 18F-FDG Uptake and the Absence of Glucose Transporter 1 Expression. Journal of the Endocrine Society, 2021, 5, bvab143.	0.2	3
42	A Rare Case of Adrenal Cysts Associated With Bilateral Incidentalomas and Diffuse Hyperplasia of the Zona Glomerulosa. Journal of the Endocrine Society, 2021, 5, bvaa184.	0.2	3
43	Less frequent body weight gain in elderly type 2 diabetic patients treated with glimepiride. Geriatrics and Gerontology International, 2003, 3, 56-59.	1.5	2
44	Verification That Mouse Chromosome 14 Is Responsible for Susceptibility to Streptozotocin in NSY Mice. International Journal of Endocrinology, 2018, 2018, 1-7.	1.5	2
45	Type 2 diabetes susceptibility genes on mouse chromosome 11 under high sucrose environment. BMC Genetics, 2020, 21, 81.	2.7	2
46	Mixed Corticomedullary Tumor Accompanied by Unilateral Aldosterone-Producing Adrenocortical Micronodules: A Case Report. Journal of the Endocrine Society, 2021, 5, bvab140.	0.2	2
47	Contribution of Class III MHC to Susceptibility to Type 1 Diabetes in the NOD Mouse. Annals of the New York Academy of Sciences, 2006, 1079, 114-117.	3.8	1
48	Congenic Mapping of the MHCâ€Linked Susceptibility to Type 1 Diabetes in the NOD Mouse. Annals of the New York Academy of Sciences, 2008, 1150, 90-92.	3.8	1
49	Prolonged hyperinsulinemia after subcutaneous injection of $2400\hat{a} \in fU$ regular insulin in a suicide attempt: Time course of serum insulin with frequent measurements. Journal of Diabetes Investigation, 2012, 3, 468-470.	2.4	1