
Fang Hua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8361423/publications.pdf Version: 2024-02-01

EANC HUA

#	Article	IF	CITATIONS
1	Inhibition of progesterone receptor membrane component-1 exacerbates neonatal hypoxic-ischemic cerebral damage in male mice. Experimental Neurology, 2022, 347, 113893.	4.1	4
2	Cellular Reprogramming and Its Potential Application in Alzheimer's Disease. Frontiers in Neuroscience, 2022, 16, 884667.	2.8	3
3	Toll-like receptor-2 gene knockout results in neurobehavioral dysfunctions and multiple brain structural and functional abnormalities in mice. Brain, Behavior, and Immunity, 2021, 91, 257-266.	4.1	9
4	Beta-amyloid activates NLRP3 inflammasome via TLR4 in mouse microglia. Neuroscience Letters, 2020, 736, 135279.	2.1	84
5	Role of Toll-like receptor mediated signaling in traumatic brain injury. Neuropharmacology, 2019, 145, 259-267.	4.1	56
6	The aetiologies of unilateral oculomotor nerve palsy: a clinical analysis on 121 patients. Somatosensory & Motor Research, 2019, 36, 102-108.	0.9	7
7	Genomic deletion of TLR2 induces aggravated white matter damage and deteriorated neurobehavioral functions in mouse models of Alzheimer's disease. Aging, 2019, 11, 7257-7273.	3.1	24
8	Gender difference in the effect of progesterone on neonatal hypoxic/ischemic brain injury in mouse. Experimental Neurology, 2018, 306, 190-198.	4.1	21
9	The Effect of Toll‣ike Receptorâ€4 on the Behavioral Impairment in Aβ1–42 Induced AD Mouse Model. FASEB Journal, 2018, 32, lb541.	0.5	0
10	MyD88 contributes to neuroinflammatory responses induced by cerebral ischemia/reperfusion in mice. Biochemical and Biophysical Research Communications, 2016, 480, 69-74.	2.1	28
11	TAK-242, an Antagonist for Toll-like Receptor 4, Protects against Acute Cerebral Ischemia/Reperfusion Injury in Mice. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 536-542.	4.3	146
12	Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Injury, 2015, 29, 1165-1174.	1.2	49
13	Progesterone and vitamin D: Improvement after traumatic brain injury in middle-aged rats. Hormones and Behavior, 2013, 64, 527-538.	2.1	52
14	Chloroquine pretreatment inhibits toll-like receptor 3 signaling after stroke. Neuroscience Letters, 2013, 548, 101-104.	2.1	35
15	Are bone marrow regenerative cells ideal seed cells for the treatment of cerebral ischemia?. Neural Regeneration Research, 2013, 8, 1201-9.	3.0	2
16	Progesterone and low-dose vitamin D hormone treatment enhances sparing of memory following traumatic brain injury. Hormones and Behavior, 2012, 61, 642-651.	2.1	58
17	Genomic profile of Toll-like receptor pathways in traumatically brain-injured mice: effect of exogenous progesterone. Journal of Neuroinflammation, 2011, 8, 42.	7.2	79
18	Progesterone and allopregnanolone attenuate blood–brain barrier dysfunction following permanent focal ischemia by regulating the expression of matrix metalloproteinases. Experimental Neurology, 2010, 226, 183-190.	4.1	141

Fang Hua

#	Article	IF	CITATIONS
19	Differential roles of TLR2 and TLR4 in acute focal cerebral ischemia/reperfusion injury in mice. Brain Research, 2009, 1262, 100-108.	2.2	131
20	The TRIF-dependent signaling pathway is not required for acute cerebral ischemia/reperfusion injury in mice. Biochemical and Biophysical Research Communications, 2009, 390, 678-683.	2.1	35
21	Preconditioning with a TLR2 specific ligand increases resistance to cerebral ischemia/reperfusion injury. Journal of Neuroimmunology, 2008, 199, 75-82.	2.3	114
22	Protection against Myocardial Ischemia/Reperfusion Injury in TLR4-Deficient Mice Is Mediated through a Phosphoinositide 3-Kinase-Dependent Mechanism. Journal of Immunology, 2007, 178, 7317-7324.	0.8	145
23	Activation of Toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. Journal of Neuroimmunology, 2007, 190, 101-111.	2.3	190
24	Modulation of TLR2 induces cardioprotection through a Phosphoinositide 3â€Kinase Dependent Mechanism. FASEB Journal, 2007, 21, A867.	0.5	0
25	TLR4 and Fasâ€L temporally increase in ischemic mouse brain. FASEB Journal, 2007, 21, A1278.	0.5	1
26	Modulation of TLR2 induces cardioprotection through a Phosphoinositide 3â€Kinase Dependent Mechanism. FASEB Journal, 2007, 21, A526.	0.5	0
27	The development of a novel mouse model of transient global cerebral ischemia. Neuroscience Letters, 2006, 400, 69-74.	2.1	20
28	Reduced neuronal injury following global cerebral ischemia in Tollâ€ l ike Receptor 4 knockout mice. FASEB Journal, 2006, 20, .	0.5	0
29	Blocking the MyD88-dependent pathway protects the myocardium from ischemia/reperfusion injury in rat hearts. Biochemical and Biophysical Research Communications, 2005, 338, 1118-1125.	2.1	59