Suxing Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8361375/publications.pdf

Version: 2024-02-01

209 papers 7,344 citations

50244 46 h-index 76 76 g-index

213 all docs

213 docs citations

213 times ranked

3460 citing authors

#	Article	IF	CITATIONS
1	Causes of fuel–ablator mix inferred from modeling of monochromatic time-gated radiography of OMEGA cryogenic implosions. Physics of Plasmas, 2022, 29, .	0.7	8
2	Enhanced laser-energy coupling with small-spot distributed phase plates (SG5-650) in OMEGA DT cryogenic target implosions. Physics of Plasmas, 2022, 29, .	0.7	9
3	Mixed Stochastic-Deterministic Time-Dependent Density Functional Theory: Application to Stopping Power of Warm Dense Carbon. Journal of Physics Condensed Matter, 2022, , .	0.7	6
4	Species separation in polystyrene shock release evidenced by molecular-dynamics simulations and laser-drive experiments. Physical Review Research, 2022, 4, .	1.3	0
5	Meta-GGA exchange-correlation free energy density functional to increase the accuracy of warm dense matter simulations. Physical Review B, 2022, 105, .	1.1	16
6	Nature of the bonded-to-atomic transition in liquid silica to TPa pressures. Journal of Applied Physics, 2022, 131, .	1.1	4
7	Proton stopping measurements at low velocity in warm dense carbon. Nature Communications, 2022, 13, .	5.8	13
8	Planar, longitudinal, compressive waves in solids: Thermodynamics and uniaxial strain restrictions. Journal of Applied Physics, 2022, 131, 215904.	1.1	1
9	A case study of using x-ray Thomson scattering to diagnose the in-flight plasma conditions of DT cryogenic implosions. Physics of Plasmas, 2022, 29, 072703.	0.7	7
10	Bound on hot-spot mix in high-velocity, high-adiabat direct-drive cryogenic implosions based on comparison of absolute x-ray and neutron yields. Physical Review E, 2022, 106, .	0.8	2
11	Observations of anomalous x-ray emission at early stages of hot-spot formation in deuterium-tritium cryogenic implosions. Physical Review E, 2021, 103, 023201.	0.8	4
12	Unraveling the intrinsic atomic physics behind x-ray absorption line shifts in warm dense silicon plasmas. Physical Review E, 2021, 103, 033202.	0.8	10
13	Shock-compressed silicon: Hugoniot and sound speed up to 2100 GPa. Physical Review B, 2021, 103, .	1.1	13
14	Melting of magnesium oxide up to two terapascals using double-shock compression. Physical Review B, 2021, 104, .	1.1	11
15	Improved modeling of the solid-to-plasma transition of polystyrene ablator for laser direct-drive inertial confinement fusion hydrocodes. Physical Review E, 2021, 104, 015210.	0.8	3
16	Experimentally Inferred Fusion Yield Dependencies of OMEGA Inertial Confinement Fusion Implosions. Physical Review Letters, 2021, 127, 105001.	2.9	23
17	Density evolution after shock release from laser-driven polystyrene (CH) targets in inertial confinement fusion. Physics of Plasmas, 2021, 28, .	0.7	2
18	Ionization state and dielectric constant in cold rarefied hydrocarbon plasmas of inertial confinement fusion. Physical Review E, 2021, 104, 045207.	0.8	2

#	Article	IF	CITATIONS
19	Improved first-principles equation-of-state table of deuterium for high-energy-density applications. Physical Review B, 2021, 104, .	1.1	8
20	On the liquid–liquid phase transition of dense hydrogen. Nature, 2021, 600, E12-E14.	13.7	12
21	Novel Hot-Spot Ignition Designs for Inertial Confinement Fusion with Liquid-Deuterium-Tritium Spheres. Physical Review Letters, 2020, 125, 065001.	2.9	9
22	Species Separation and Hydrogen Streaming upon Shock Release from Polystyrene under Inertial Confinement Fusion Conditions. Physical Review Letters, 2020, 125, 105001.	2.9	11
23	Thermal effects on the electronic properties of sodium electride under high pressures. Physical Review B, 2020, 102, .	1.1	10
24	Modeling the electron collision frequency during solid-to-plasma transition of polystyrene ablator for direct-drive inertial confinement fusion applications. Physics of Plasmas, 2020, 27, .	0.7	5
25	Measurement of the sound velocity and $Gr\tilde{A}^{1}\!\!/\!\!$ neisen parameter of polystyrene at inertial confinement fusion conditions. Physical Review B, 2020, 102, .	1.1	9
26	Implementing a microphysics model in hydrodynamic simulations to study the initial plasma formation in dielectric ablator materials for direct-drive implosions. Physical Review E, 2020, 101, 063202.	0.8	4
27	Hybrid target design for imprint mitigation in direct-drive inertial confinement fusion. Physical Review E, 2020, 101, 063207.	0.8	10
28	Thermal hybrid exchange-correlation density functional for improving the description of warm dense matter. Physical Review B, 2020, 101, .	1.1	16
29	Interspecies radiative transition in warm and superdense plasma mixtures. Nature Communications, 2020, 11, 1989.	5.8	10
30	Fully consistent density functional theory determination of the insulator-metal transition boundary in warm dense hydrogen. Physical Review Research, 2020, 2, .	1.3	15
31	Collisionless Shocks Driven by Supersonic Plasma Flows with Self-Generated Magnetic Fields. Physical Review Letters, 2019, 123, 055002.	2.9	26
32	Exchange-correlation thermal effects in shocked deuterium: Softening the principal Hugoniot and thermophysical properties. Physical Review B, 2019, 99, .	1.1	22
33	Crystalline phase transitions and vibrational spectra of silicon up to multiterapascal pressures. Physical Review B, 2019, 100, .	1.1	9
34	Modeling the solid-to-plasma transition for laser imprinting in direct-drive inertial confinement fusion. Physical Review E, 2019, 100, 033201.	0.8	18
35	Molecular Symmetry-Mixed Dichroism in Double Photolonization of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi mathvariant="normal">H</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow><mml:mn>2</mml:mn><td>2.9 ıb><td>2 mrow> </td></td></mml:math>	2.9 ıb> <td>2 mrow> </td>	2 mrow>
36	Physical Review Letters, 2019, 123, 143202. Tripled yield in direct-drive laser fusion through statistical modelling. Nature, 2019, 565, 581-586.	13.7	103

#	Article	IF	CITATIONS
37	Direct-drive measurements of laser-imprint-induced shock velocity nonuniformities. Physical Review E, 2019, 99, 063208.	0.8	15
38	Anharmonic and Anomalous Trends in the High-Pressure Phase Diagram of Silicon. Physical Review Letters, 2019, 122, 125701.	2.9	15
39	Simulated refraction-enhanced X-ray radiography of laser-driven shocks. Physics of Plasmas, 2019, 26, .	0.7	8
40	Breakdown of Fermi Degeneracy in the Simplest Liquid Metal. Physical Review Letters, 2019, 122, 085001.	2.9	6
41	Plasma Density Measurements of the Inner Shell Release. Physical Review Letters, 2019, 123, 235001.	2.9	15
42	Direct-drive double-shell implosion: A platform for burning-plasma physics studies. Physical Review E, 2019, 100, 063204.	0.8	18
43	Electron-electron correlation in two-photon double ionization of He-like ions. Physical Review A, 2018, 97, .	1.0	7
44	The National Direct-Drive Program: OMEGA to the National Ignition Facility. Fusion Science and Technology, 2018, 73, 89-97.	0.6	12
45	A review on <i>ab initio</i> studies of static, transport, and optical properties of polystyrene under extreme conditions for inertial confinement fusion applications. Physics of Plasmas, 2018, 25, .	0.7	27
46	Hu Replies:. Physical Review Letters, 2018, 120, 119502.	2.9	7
47	Dynamical electron vortices in attosecond double photoionization of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">H</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review A, 2018. 98	1.0	28
48	<i>AbÂlnitio</i> Studies on the Stopping Power of Warm Dense Matter with Time-Dependent Orbital-Free Density Functional Theory. Physical Review Letters, 2018, 121, 145001.	2.9	44
49	Time-dependent orbital-free density functional theory for electronic stopping power: Comparison to the Mermin-Kohn-Sham theory at high temperatures. Physical Review B, 2018, 98, .	1.1	27
50	Properties of hot-spot emission in a warm plastic-shell implosion on the OMEGA laser system. Physical Review E, 2018, 98, .	0.8	2
51	Kinetic simulation of magnetic field generation and collisionless shock formation in expanding laboratory plasmas. Physics of Plasmas, 2018, 25, .	0.7	26
52	Radiative and atomic properties of C and CH plasmas in the warm-dense-matter regime. Physical Review E, 2018, 98, .	0.8	5
53	Mitigating laser-imprint effects in direct-drive inertial confinement fusion implosions with an above-critical-density foam layer. Physics of Plasmas, 2018, 25, .	0.7	16
54	A Review of Equation-of-State Models for Inertial Confinement Fusion Materials. High Energy Density Physics, 2018, 28, 7-24.	0.4	54

#	Article	IF	CITATIONS
55	Biermann-Battery-Mediated Magnetic Reconnection in 3D Colliding Plasmas. Physical Review Letters, 2018, 121, 095001.	2.9	12
56	First-principles equation-of-state table of beryllium based on density-functional theory calculations. Physics of Plasmas, 2017, 24, 062702.	0.7	20
57	Effects of laser-plasma instabilities on hydro evolution in an OMEGA-EP long-scale-length experiment. Physics of Plasmas, 2017, 24, 022706.	0.7	6
58	Optical properties of highly compressed polystyrene: An ab initio study. Physical Review B, 2017, 96, .	1.1	22
59	A few selected contributions to electron and photon collisions with H2and $\{m\{H\}\}_{2}^{+}\$. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 214002.	0.6	0
60	Simulation and analysis of time-gated monochromatic radiographs of cryogenic implosions on OMEGA. High Energy Density Physics, 2017, 23, 167-177.	0.4	4
61	Kinematical vortices in double photoionization of helium by attosecond pulses. Physical Review A, 2017, 96, .	1.0	40
62	First-principles equation-of-state table of silicon and its effects on high-energy-density plasma simulations. Physical Review E, 2017, 95, 043210.	0.8	17
63	Continuum Lowering and Fermi-Surface Rising in Strongly Coupled and Degenerate Plasmas. Physical Review Letters, 2017, 119, 065001.	2.9	55
64	Measurement of the shell decompression in direct-drive inertial-confinement-fusion implosions. Physical Review E, 2017, 95, 051202.	0.8	16
65	High-Mach number, laser-driven magnetized collisionless shocks. Physics of Plasmas, 2017, 24, .	0.7	23
66	Electron Shock Ignition of Inertial Fusion Targets. Physical Review Letters, 2017, 119, 195001.	2.9	42
67	Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory. Physical Review Letters, 2017, 119, 025001.	2.9	66
68	National direct-drive program on OMEGA and the National Ignition Facility. Plasma Physics and Controlled Fusion, 2017, 59, 014008.	0.9	50
69	Electron Matter-Wave Vortices in Double Photoionization of Helium by Attosecond Pulses. Journal of Physics: Conference Series, 2017, 875, 022014.	0.3	0
70	Demonstrating ignition hydrodynamic equivalence in direct-drive cryogenic implosions on OMEGA. Journal of Physics: Conference Series, 2016, 717, 012008.	0.3	8
71	Direct-drive implosion physics: Results from OMEGA and the National Ignition Facility. Journal of Physics: Conference Series, 2016, 688, 012006.	0.3	4
72	Development of a WDM platform for charged-particle stopping experiments. Journal of Physics: Conference Series, 2016, 717, 012118.	0.3	4

#	Article	IF	Citations
73	Polar-direct-drive experiments at the National Ignition Facility. Journal of Physics: Conference Series, 2016, 717, 012009.	0.3	1
74	Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet. Nature Communications, 2016, 7, 13081.	5.8	46
75	Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility. Physics of Plasmas, 2016, 23, .	0.7	19
76	Direct drive: Simulations and results from the National Ignition Facility. Physics of Plasmas, 2016, 23, 056305.	0.7	36
77	Understanding the effects of laser imprint on plastic-target implosions on OMEGA. Physics of Plasmas, 2016, 23, .	0.7	38
78	First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications. Physics of Plasmas, 2016, 23, .	0.7	40
79	First-principles prediction of the softening of the silicon shock Hugoniot curve. Physical Review B, 2016, 94, .	1.1	39
80	Multistart spiral electron vortices in ionization by circularly polarized UV pulses. Physical Review A, 2016, 94, .	1.0	78
81	Demonstration of Fuel Hot-Spot Pressure in Excess of 50ÂGbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA. Physical Review Letters, 2016, 117, 025001.	2.9	72
82	First-principles studies on the equation of state, thermal conductivity, and opacity of deuterium-tritium (DT) and polystyrene (CH) for inertial confinement fusion applications. Journal of Physics: Conference Series, 2016, 717, 012064.	0.3	2
83	First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions. Physical Review E, 2015, 92, 043104.	0.8	68
84	Electron Vortices in Photoionization by Circularly Polarized Attosecond Pulses. Physical Review Letters, 2015, 115, 113004.	2.9	141
85	Direct-drive inertial confinement fusion: A review. Physics of Plasmas, 2015, 22, .	0.7	521
86	Favorable target positions for intense laser acceleration of electrons in hydrogen-like, highly-charged ions. Physics of Plasmas, 2015, 22, 093111.	0.7	8
87	Measurement of Charged-Particle Stopping in Warm Dense Plasma. Physical Review Letters, 2015, 114, 215002.	2.9	107
88	Implosion dynamics in direct-drive experiments. Plasma Physics and Controlled Fusion, 2015, 57, 014023.	0.9	9
89		0.7	8
90	Measurements of the Conduction-Zone Length and Mass Ablation Rate in Cryogenic Direct-Drive Implosions on OMEGA. Physical Review Letters, 2015, 114, 155002.	2.9	12

#	Article	IF	CITATIONS
91	Impact of first-principles properties of deuterium–tritium on inertial confinement fusion target designs. Physics of Plasmas, 2015, 22, .	0.7	38
92	Direct observation of the two-plasmon-decay common plasma wave using ultraviolet Thomson scattering. Physical Review E, 2015, 91, 031104.	0.8	20
93	Mass-ablation-rate measurements in direct-drive cryogenic implosions using x-ray self-emission images. Review of Scientific Instruments, 2014, 85, 11D616.	0.6	2
94	Soft x-ray backlighting of cryogenic implosions using a narrowband crystal imaging system (invited). Review of Scientific Instruments, 2014, 85, 11E501.	0.6	24
95	Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility. Physics of Plasmas, 2014, 21, .	0.7	68
96	Shock-ignition relevant experiments with planar targets on OMEGA. Physics of Plasmas, 2014, 21, 022702.	0.7	42
97	Nonlinear Dichroism in Back-to-Back Double Ionization of He by an Intense Elliptically Polarized Few-Cycle Extreme Ultraviolet Pulse. Physical Review Letters, 2014, 113, 223002.	2.9	29
98	First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications. Physical Review E, 2014, 89, 043105.	0.8	69
99	Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA. Physics of Plasmas, 2014, 21, .	0.7	139
100	Magnetic Reconnection between Colliding Magnetized Laser-Produced Plasma Plumes. Physical Review Letters, 2014, 113, 105003.	2.9	97
101	First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications. Physical Review E, 2014, 90, 033111.	0.8	53
102	Properties of warm dense polystyrene plasmas along the principal Hugoniot. Physical Review E, 2014, 89, 063104.	0.8	37
103	Measurements of electron density profiles using an angular filter refractometer. Physics of Plasmas, 2014, 21, .	0.7	33
104	Asymmetries in production of He <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mrow></mml:mrow><mml:mo>+</mml:mo><mml:mo>=</mml:mo> an intense few-cycle attosecond pulse. Physical Review A, 2013, 88, .</mml:msup></mml:mrow></mml:math>	1.0 nml:mo><	: 10 : mml:mn>2<
105	Mitigation of cross-beam energy transfer: Implication of two-state focal zooming on OMEGA. Physics of Plasmas, 2013, 20, 082704.	0.7	35
106	Filamentation Instability of Counterstreaming Laser-Driven Plasmas. Physical Review Letters, 2013, 111, 225002.	2.9	158
107	Structure and Dynamics of Colliding Plasma Jets. Physical Review Letters, 2013, 111, 235003.	2.9	35
108	Hydrodynamic simulations of long-scale-length two-plasmon–decay experiments at the Omega Laser Facility. Physics of Plasmas, 2013, 20, .	0.7	35

#	Article	IF	Citations
109	Instability-driven electromagnetic fields in coronal plasmas. Physics of Plasmas, 2013, 20, .	0.7	15
110	Improving cryogenic deuterium–tritium implosion performance on OMEGA. Physics of Plasmas, 2013, 20, .	0.7	48
111	Progress towards polar-drive ignition for the NIF. Nuclear Fusion, 2013, 53, 113021.	1.6	20
112	Measured hot-electron intensity thresholds quantified by a two-plasmon-decay resonant common-wave gain in various experimental configurations. Physics of Plasmas, 2013, 20, .	0.7	47
113	Comparison between x-ray scattering and velocity-interferometry measurements from shocked liquid deuterium. Physical Review E, 2013, 87, 043112.	0.8	17
114	Boosting Photoabsorption by Attosecond Control of Electron Correlation. Physical Review Letters, 2013, 111, 123003.	2.9	61
115	Enhanced asymmetry in few-cycle attosecond pulse ionization of He in the vicinity of autoionizing resonances. New Journal of Physics, 2012, 14, 095010.	1.2	25
116	Experimental reduction of laser imprinting and Rayleigh–Taylor growth in spherically compressed, medium-Z-doped plastic targets. Physics of Plasmas, 2012, 19, 062704.	0.7	41
117	Burning plasmas with ultrashort soft-x-ray flashing. Physics of Plasmas, 2012, 19, 072703.	0.7	6
118	Rayleigh-Taylor-induced magnetic fields in laser-irradiated plastic foils. Physics of Plasmas, 2012, 19, .	0.7	10
119	Laser–plasma interactions in direct-drive ignition plasmas. Plasma Physics and Controlled Fusion, 2012, 54, 124016.	0.9	31
120	Magnetic Field Generation by the Rayleigh-Taylor Instability in Laser-Driven Planar Plastic Targets. Physical Review Letters, 2012, 109, 115001.	2.9	42
121	First Measurements of Rayleigh-Taylor-Induced Magnetic Fields in Laser-Produced Plasmas. Physical Review Letters, 2012, 108, 255006.	2.9	64
122	Subcycle ac Stark Shift of Helium Excited States Probed with Isolated Attosecond Pulses. Physical Review Letters, 2012, 109, 073601.	2.9	136
123	Experimental Validation of the Two-Plasmon-Decay Common-Wave Process. Physical Review Letters, 2012, 109, 155007.	2.9	57
124	Spherical shock-ignition experiments with the 40 + 20-beam configuration on OMEGA. Physics of Plasmas, 2012, 19 , .	0.7	78
125	Sub-cycle AC Stark Shift., 2012, , .		0
126	Saturation of the Two-Plasmon Decay Instability in Long-Scale-Length Plasmas Relevant to Direct-Drive Inertial Confinement Fusion. Physical Review Letters, 2012, 108, 165003.	2.9	58

#	Article	IF	CITATIONS
127	Inelastic X-Ray Scattering from Shocked Liquid Deuterium. Physical Review Letters, 2012, 109, 265003.	2.9	43
128	Study of Rayleigh–Taylor growth in directly driven cryogenic-deuterium targets. Physics of Plasmas, 2012, 19, .	0.7	3
129	Self-consistent measurement of the equation of state of liquid deuterium. High Energy Density Physics, 2012, 8, 76-80.	0.4	16
130	Fast-electron generation in long-scale-length plasmas. Physics of Plasmas, 2012, 19, .	0.7	46
131	Mitigating Laser Imprint in Direct-Drive Inertial Confinement Fusion Implosions with High- <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Z</mml:mi></mml:math> Dopants. Physical Review Letters, 2012, 108, 195003.	2.9	70
132	Velocity and Timing of Multiple Spherically Converging Shock Waves in Liquid Deuterium. Physical Review Letters, 2011, 106, 195005.	2.9	54
133	First-principles equation-of-state table of deuterium for inertial confinement fusion applications. Physical Review B, 2011, 84, .	1.1	167
134	High-performance inertial confinement fusion target implosions on OMEGA. Nuclear Fusion, 2011, 51, 053010.	1.6	33
135	Recent Advances in Computational Methods for the Solution of the Time-Dependent Schr $\tilde{A}\P$ dinger Equation for the Interaction of Short, Intense Radiation with One and Two Electron Systems. , 2011, , 149-208.		6
136	Spectroscopic observations of Fermi-degenerate aluminum compressed and heated to four times solid density and 20ÂeV. High Energy Density Physics, 2011, 7, 259-262.	0.4	3
137	Attosecond timing the ultrafast charge-transfer process in atomic collisions. Physical Review A, 2011, 83, .	1.0	7
138	Effects of electron-ion temperature equilibration on inertial confinement fusion implosions. Physical Review E, 2011, 84, 016408.	0.8	35
139	Multiple spherically converging shock waves in liquid deuterium. Physics of Plasmas, 2011, 18, 092706.	0.7	34
140	Progress in cryogenic target implosions on OMEGA. Journal of Physics: Conference Series, 2010, 244, 012004.	0.3	1
141	Optimizing the FEDVR-TDCC code for exploring the quantum dynamics of two-electron systems in intense laser pulses. Physical Review E, 2010, 81, 056705.	0.8	32
142	Strong Coupling and Degeneracy Effects in Inertial Confinement Fusion Implosions. Physical Review Letters, 2010, 104, 235003.	2.9	137
143	Demonstration of the Highest Deuterium-Tritium Areal Density Using Multiple-Picket Cryogenic Designs on OMEGA. Physical Review Letters, 2010, 104, 165001.	2.9	111
144	Two-dimensional simulations of the neutron yield in cryogenic deuterium-tritium implosions on OMEGA. Physics of Plasmas, 2010, 17, 102706.	0.7	43

#	Article	IF	CITATIONS
145	Shock-tuned cryogenic-deuterium-tritium implosion performance on Omega. Physics of Plasmas, 2010, 17, 056312.	0.7	33
146	Al \hat{a} e‰ $1~s$ - $2~p$ absorption spectroscopy of shock-wave heating and compression in laser-driven planar foil. Physics of Plasmas, 2009, 16 , .	0.7	18
147	Cryogenic-target performance and implosion physics studies on OMEGA. Physics of Plasmas, 2009, 16, 056301.	0.7	13
148	Attosecond photoelectron microscopy of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mmultiscripts><mml:mtext>H</mml:mtext><mml:mn>2</mml:mn><mml:noi></mml:noi><mml:moo+< mml:moo=""></mml:moo+<></mml:mmultiscripts></mml:mrow></mml:math> . Physical Review	n ∉. O	49
149	A, 2009, 80, . Rayleigh-Taylor Growth Measurements in the Acceleration Phase of Spherical Implosions on OMEGA. Physical Review Letters, 2009, 103, 105001.	2.9	52
150	Neutron yield study of direct-drive, low-adiabat cryogenic D2 implosions on OMEGA laser system. Physics of Plasmas, 2009, 16, 112706.	0.7	27
151	Demonstration of the shock-timing technique for ignition targets on the National Ignition Facility. Physics of Plasmas, 2009, 16, .	0.7	82
152	Spherical Rayleigh–Taylor growth of three-dimensional broadband perturbations on OMEGA. Physics of Plasmas, 2009, 16, 112701.	0.7	22
153	Angular momentum exchange between coherent light and matter fields. Physical Review A, 2008, 77, .	1.0	37
154	Studies of Plastic-Ablator Compressibility for Direct-Drive Inertial Confinement Fusion on Omega. Physical Review Letters, 2008, 100, 185003.	2.9	28
155	Systematic study of Rayleigh–Taylor growth in directly driven plastic targets in a laser-intensity range from â^1⁄42×1014toâ^1⁄41.5×1015Wâ^•cm2. Physics of Plasmas, 2008, 15, .	0.7	30
156	Performance of direct-drive cryogenic targets on OMEGA. Physics of Plasmas, 2008, 15, .	0.7	92
157	Validation of Thermal-Transport Modeling with Direct-Drive, Planar-Foil Acceleration Experiments on OMEGA. Physical Review Letters, 2008, 101, 055002.	2.9	42
158	Rayleigh-Taylor Growth Stabilization in Direct-Drive Plastic Targets at Laser Intensities of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mo>â^¼</mml:mo><mml:mn>1</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mathvariant="normal">W<mml:mo>/</mml:mo><mml:msup><mml:mi>cm</mml:mi><mml:mi>2/<mml:msup><mml:mi>cm</mml:mi><mml:mi>cm</mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:< td=""><td>nr2.90nl:mn><td>ന്പങന> < mm nml:msup> <!--</td--></td></td></mml:<></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:msup></mml:mi></mml:msup></mml:mathvariant="normal"></mml:msup></mml:math>	n r2.9 0nl:mn> <td>ന്പങന> < mm nml:msup> <!--</td--></td>	ന ്പങ ന> < mm nml:msup> </td
159	Physical Review Letters, 2008, 101, 025002. Modeling high-compression, direct-drive, ICF experiments. Journal of Physics: Conference Series, 2008, 112, 022002.	0.3	0
160	Cryogenic target-implosion experiments on OMEGA. Journal of Physics: Conference Series, 2008, 112, 022001.	0.3	2
161	Heating of frozen Rydberg gases in a strong magnetic field. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41, 081009.	0.6	3
162	Three-Body Recombination of Atomic Ions with Slow Electrons. Physical Review Letters, 2007, 98, 133201.	2.9	16

#	Article	IF	Citations
163	Producing ultracold and trappable antihydrogen atoms. Physical Review A, 2007, 75, .	1.0	4
164	Probing ultrafast electron correlation with double attosecond pulses. Journal of Modern Optics, 2007, 54, 943-952.	0.6	10
165	Attosecond Pump Probe: Exploring Ultrafast Electron Motion inside an Atom. Physical Review Letters, 2006, 96, 073004.	2.9	120
166	Strong-field ionization of molecules in circularly polarized few-cycle pulses. Physical Review A, 2006, 73, .	1.0	21
167	Laser acceleration of electrons to giga-electron-volt energies using highly charged ions. Physical Review E, 2006, 73, 066502.	0.8	34
168	Generating a single attosecond pulse from dissociated molecules driven by a few-cycle pulse. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, L185-L193.	0.6	10
169	Relativistic high-power laser–matter interactions. Physics Reports, 2006, 427, 41-155.	10.3	412
170	Bogoliubov-ÄŒerenkov Radiation in a Bose-Einstein Condensate Flowing against an Obstacle. Physical Review Letters, 2006, 97, 260403.	2.9	131
171	Parallel solver for the time-dependent linear and nonlinear SchrĶdinger equation. Physical Review E, 2006, 73, 036708.	0.8	101
172	Quantum study of slow electron collisions with Rydberg atoms. Physical Review A, 2006, 74, .	1.0	9
173	Triple-differential cross-sections for two-photon double ionization of He near threshold. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, L35-L45.	0.6	86
174	Time-dependent study of photon-induced autoionization decay. Physical Review A, 2005, 71, .	1.0	17
175	Imaging Molecular Structures by Electron Diffraction Using an Intense Few-Cycle Pulse. Physical Review Letters, 2005, 94, 073004.	2.9	71
176	Formation of antihydrogen atoms and ions in a strongly magnetized plasma: A molecular dynamics simulation. Physical Review A, 2005, 72, .	1.0	8
177	Molecular-Dynamics Simulations of Cold Antihydrogen Formation in Strongly Magnetized Plasmas. Physical Review Letters, 2005, 95, 163402.	2.9	15
178	High-order harmonic generation from intense laser-driven inner electrons of Rydberg atoms. Physical Review A, 2004, 69, .	1.0	12
179	Redistributing populations of Rydberg atoms with half-cycle pulses. Physical Review A, 2004, 69, .	1.0	9
180	Phase control of the inverse above-threshold-ionization process with few-cycle pulses. Physical Review A, 2004, 70, .	1.0	11

#	Article	lF	CITATIONS
181	Intense laser-induced recombination: The inverse above-threshold ionization process. Physical Review A, 2004, 70, .	1.0	26
182	ControllingHâ^'detachment with few-cycle pulses. Physical Review A, 2003, 68, .	1.0	25
183	Spin and radiation in intense laser fields. Physical Review A, 2002, 65, .	1.0	73
184	Coherent x-ray pulse generation in the sub-Ãngström regime. Applied Physics Letters, 2002, 80, 541-543.	1.5	27
185	GeV Electrons from Ultraintense Laser Interaction with Highly Charged Ions. Physical Review Letters, 2002, 88, 245003.	2.9	61
186	Nontunnelling high-order harmonics from ultra-intense laser-driven tightly bound systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 627-650.	0.6	23
187	High-efficiency high-order harmonic generation without tunneling. Physical Review A, 2001, 64, .	1.0	15
188	High-order regime of harmonic generation with two active electrons. Physical Review A, 2001, 64, .	1.0	18
189	Dynamics of multiply charged ions in intense laser fields. Physical Review A, 2001, 63, .	1.0	69
190	Electrons and Ions in Relativistic Laser Fields. , 2001, , 273-283.		0
191	Coherent x-ray generation with laser driven ions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2000, 33, L411-L417.	0.6	24
192	Quantum-mechanical model for ultrahigh-order harmonic generation in the moderately relativistic regime. Physical Review A, 2000, 63, .	1.0	70
193	Hollowing out single ions with high-power lasers. Europhysics Letters, 1999, 47, 318-323.	0.7	23
194	Spin Signatures in Intense Laser-Ion Interaction. Physical Review Letters, 1999, 83, 4709-4712.	2.9	110
195	Classical model of interaction of 1-D helium with an intense ultrashort laser pulse. Science in China Series A: Mathematics, 1998, 41, 1100-1106.	0.5	0
196	Enhanced ionization of multi-well quantum systems in intense laser fields. Science in China Series A: Mathematics, 1998, 41, 198-202.	0.5	3
197	Enhanced ionization of in ultra-short intense laser fields. Journal of Physics B: Atomic, Molecular and Optical Physics, 1998, 31, 1523-1531.	0.6	8
198	Electron-correlation effects in intense-field ionization of hydrogen molecules. Physical Review A, 1998, 57, 3770-3774.	1.0	11

Suxing Hu

#	Article	IF	CITATIONS
199	Classical dynamics ofH2+interacting with an ultrashort intense laser pulse. Physical Review A, 1998, 57, 2219-2222.	1.0	14
200	Classical simulation for one-dimensionalH2interacting with intense ultrashort laser pulses. Physical Review A, 1998, 57, 4528-4532.	1.0	12
201	Stability of above threshold ionization spectrum during intense-field ionization of H2+ near Rc. Applied Physics Letters, 1998, 73, 2552-2554.	1.5	7
202	Enhanced harmonic emission from ionized clusters in intense laser pulses. Applied Physics Letters, 1997, 71, 2605-2607.	1.5	67
203	Dynamics of an intense laser-driven multiwell system: A model of ionized clusters. Physical Review A, 1997, 56, 3916-3922.	1.0	40
204	Energy enhancement of harmonic photons with a half-period-delayed pulse. Applied Physics Letters, 1997, 70, 1065-1067.	1.5	7
205	Extending harmonic order with a half-cycle-delayed pulse. Science Bulletin, 1997, 42, 199-203.	1.7	0
206	The evolution of molecular wave packet in superstrong laser fields. Science Bulletin, 1997, 42, 33-37.	1.7	0
207	Symmetric fragmentation of polyatomic molecular ions in ultrashort intense laser pulses. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 235, 379-384.	0.9	4
208	Compression mechanism of picosecond optical pulse in far infrared waveguide free electron laser. Applied Physics Letters, 1995, 67, 3373-3375.	1.5	0
209	Imprinting a Three-Dimensional Skyrmion in a Bose–Einstein Condensate Via a Raman Process. Journal of Low Temperature Physics, 0, , 1.	0.6	0