Chang-You Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8361094/publications.pdf Version: 2024-02-01

		394421	642732
23	2,436	19	23
papers	citations	h-index	g-index
23	23	23	2350
all docs	docs citations	times ranked	citing authors

<u>CHANC-YOU SHAO</u>

#	Article	IF	CITATIONS
1	Mussel-Inspired Cellulose Nanocomposite Tough Hydrogels with Synergistic Self-Healing, Adhesive, and Strain-Sensitive Properties. Chemistry of Materials, 2018, 30, 3110-3121.	6.7	627
2	High-Strength, Tough, and Self-Healing Nanocomposite Physical Hydrogels Based on the Synergistic Effects of Dynamic Hydrogen Bond and Dual Coordination Bonds. ACS Applied Materials & Interfaces, 2017, 9, 28305-28318.	8.0	326
3	High-Strength, Self-Adhesive, and Strain-Sensitive Chitosan/Poly(acrylic acid) Double-Network Nanocomposite Hydrogels Fabricated by Salt-Soaking Strategy for Flexible Sensors. ACS Applied Materials & Interfaces, 2019, 11, 39228-39237.	8.0	228
4	A Self-Healing Cellulose Nanocrystal-Poly(ethylene glycol) Nanocomposite Hydrogel via Diels–Alder Click Reaction. ACS Sustainable Chemistry and Engineering, 2017, 5, 6167-6174.	6.7	206
5	Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels. ACS Applied Materials & Interfaces, 2019, 11, 5885-5895.	8.0	171
6	Tannic Acid–Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydrogel Sensors with Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties. ACS Applied Materials & Interfaces, 2020, 12, 56509-56521.	8.0	161
7	Highly Conductive and Mechanically Robust Cellulose Nanocomposite Hydrogels with Antifreezing and Antidehydration Performances for Flexible Humidity Sensors. ACS Applied Materials & Interfaces, 2022, 14, 10886-10897.	8.0	87
8	Autonomous Self-Healing Silk Fibroin Injectable Hydrogels Formed via Surfactant-Free Hydrophobic Association. ACS Applied Materials & Interfaces, 2020, 12, 1628-1639.	8.0	80
9	Chitosan-based multifunctional flexible hemostatic bio-hydrogel. Acta Biomaterialia, 2021, 136, 170-183.	8.3	68
10	An integrated self-healable and robust conductive hydrogel for dynamically self-adhesive and highly conformable electronic skin. Journal of Materials Chemistry C, 2019, 7, 15208-15218.	5.5	67
11	Transparent, Selfâ€Adhesive, Conductive Organohydrogels with Fast Gelation from Ligninâ€Based Selfâ€Catalytic System for Extreme Environmentâ€Resistant Triboelectric Nanogenerators. Advanced Functional Materials, 2022, 32, .	14.9	63
12	Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing. Nano Energy, 2022, 98, 107284.	16.0	60
13	A renewable biomass-based lignin film as an effective protective layer to stabilize zinc metal anodes for high-performance zinc–iodine batteries. Journal of Materials Chemistry A, 2022, 10, 4845-4857.	10.3	47
14	Super-compressible, fatigue resistant and anisotropic carbon aerogels for piezoresistive sensors. Cellulose, 2018, 25, 7329-7340.	4.9	46
15	Preparation of carbon aerogels from TEMPO-oxidized cellulose nanofibers for organic solvents absorption. RSC Advances, 2017, 7, 38220-38230.	3.6	40
16	Cellulose melt processing assisted by small biomass molecule to fabricate recyclable ionogels for versatile stretchable triboelectric nanogenerators. Nano Energy, 2021, 90, 106619.	16.0	39
17	A mussel-inspired flexible chitosan-based bio-hydrogel as a tailored medical adhesive. International Journal of Biological Macromolecules, 2021, 189, 183-193.	7.5	29
18	lonically Cross-Linked Silk Microfibers/Alginate Tough Composite Hydrogels with Hierarchical Structures. ACS Sustainable Chemistry and Engineering, 2018, 6, 16788-16796.	6.7	26

CHANG-YOU SHAO

#	Article	IF	CITATIONS
19	Strain Rate-Dependent Viscoelasticity and Fracture Mechanics of Cellulose Nanofibril Composite Hydrogels. Langmuir, 2019, 35, 10542-10550.	3.5	23
20	Lithium Bonds Enable Small Biomass Moleculeâ€Based Ionoelastomers with Multiple Functions for Soft Intelligent Electronics. Small, 2022, 18, e2200421.	10.0	18
21	Physically Cross-Linked Silk Hydrogels with High Solid Content and Excellent Mechanical Properties via a Reverse Dialysis Concentrated Procedure. ACS Sustainable Chemistry and Engineering, 2019, 7, 13324-13332.	6.7	12
22	Ultrahighly Elastic Lignin-Based Copolymers as an Effective Binder for Silicon Anodes of Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 166-176.	6.7	9
23	Dynamics in Cellulose-Based Hydrogels with Reversible Cross-Links. Advances in Polymer Science, 2020, , 319-354.	0.8	3