## Lingxian Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8361020/publications.pdf

Version: 2024-02-01

22 3,132 14 22
papers citations h-index g-index

23 23 23 4147
all docs docs citations times ranked citing authors

| #  | Article                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361, 1094-1098.                                                                                                                                                                        | 12.6 | 2,262     |
| 2  | Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nature Electronics, 2019, 2, 513-520.                                                                                                                                                      | 26.0 | 255       |
| 3  | Achieving an Efficient and Stable Morphology in Organic Solar Cells Via Fine-Tuning the Side Chains of Small-Molecule Acceptors. Chemistry of Materials, 2020, 32, 2593-2604.                                                                                                  | 6.7  | 91        |
| 4  | Achieving Both Enhanced Voltage and Current through Fineâ€Tuning Molecular Backbone and Morphology Control in Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1901024.                                                                                                | 19.5 | 73        |
| 5  | High Performance Thickâ€Film Nonfullerene Organic Solar Cells with Efficiency over 10% and Active Layer Thickness of 600 nm. Advanced Energy Materials, 2019, 9, 1902688.                                                                                                      | 19.5 | 69        |
| 6  | The rational and effective design of nonfullerene acceptors guided by a semi-empirical model for an organic solar cell with an efficiency over 15%. Journal of Materials Chemistry A, 2020, 8, 9726-9732.                                                                      | 10.3 | 54        |
| 7  | A Tandem Organic Solar Cell with PCE of 14.52% Employing Subcells with the Same Polymer Donor and Two Absorption Complementary Acceptors. Advanced Materials, 2019, 31, e1804723.                                                                                              | 21.0 | 48        |
| 8  | Tuning Morphology of Active Layer by using a Wide Bandgap Oligomerâ€Like Donor Enables Organic Solar Cells with Over 18% Efficiency. Advanced Energy Materials, 2022, 12, .                                                                                                    | 19.5 | 45        |
| 9  | Flexible Highâ€Performance and Solutionâ€Processed Organic Photovoltaics with Robust Mechanical Stability. Advanced Functional Materials, 2021, 31, 2010000.                                                                                                                   | 14.9 | 29        |
| 10 | A nonfullerene acceptor incorporating a dithienopyran fused backbone for organic solar cells with efficiency over 14%. Nano Energy, 2020, 75, 104988.                                                                                                                          | 16.0 | 27        |
| 11 | Achieving organic solar cells with efficiency over 14% based on a non-fullerene acceptor incorporating a cyclopentathiophene unit fused backbone. Journal of Materials Chemistry A, 2020, 8, 5194-5199.                                                                        | 10.3 | 21        |
| 12 | Allâ€Smallâ€Molecule Organic Solar Cells with Efficiency Approaching 16% and FF over 80%. Small, 2022, 18, e2201400.                                                                                                                                                           | 10.0 | 21        |
| 13 | Can Isotope Effects Enable Organic Solar Cells to Achieve Smaller Non-Radiative Energy Losses and Why?. Chemistry of Materials, 2022, 34, 6009-6025.                                                                                                                           | 6.7  | 19        |
| 14 | Concurrently Improved <i>J</i> <sub>sc</sub> , Fill Factor, and Stability in a Ternary Organic Solar Cell Enabled by a C-Shaped Non-fullerene Acceptor and Its Structurally Similar Third Component. ACS Applied Materials & District Samp; Interfaces, 2021, 13, 40766-40777. | 8.0  | 18        |
| 15 | Tandem organic solar cells with 18.67% efficiency <i>via</i> careful subcell design and selection. Journal of Materials Chemistry A, 2022, 10, 11238-11245.                                                                                                                    | 10.3 | 18        |
| 16 | Subtle Morphology Control with Binary Additives for High-Efficiency Non-Fullerene Acceptor Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27425-27432.                                                                                               | 8.0  | 16        |
| 17 | An oxygen heterocycle-fused fluorene based non-fullerene acceptor for high efficiency organic solar cells. Materials Chemistry Frontiers, 2020, 4, 3594-3601.                                                                                                                  | 5.9  | 15        |
| 18 | Improving current and mitigating energy loss in ternary organic photovoltaics enabled by two well-compatible small molecule acceptors. Science China Chemistry, 2021, 64, 608-615.                                                                                             | 8.2  | 13        |

| #  | Article                                                                                                                                                                                               | lF  | CITATION |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|
| 19 | An acceptor–donor–acceptor type non-fullerene acceptor with an asymmetric backbone for high performance organic solar cells. Journal of Materials Chemistry C, 2020, 8, 6293-6298.                    | 5.5 | 12       |
| 20 | Tuning the Phase Separation by Thermal Annealing Enables High-Performance All-Small-Molecule Organic Solar Cells. Chemistry of Materials, 2022, 34, 3168-3177.                                        | 6.7 | 12       |
| 21 | Structural optimization of acceptor molecules guided by a semi-empirical model for organic solar cells with efficiency over 15%. Science China Materials, 2021, 64, 2388-2396.                        | 6.3 | 6        |
| 22 | Molecular optimization of incorporating pyran fused acceptor–donor–acceptor type acceptors enables over 15% efficiency in organic solar cells. Journal of Materials Chemistry C, 2022, 10, 1977-1983. | 5.5 | 6        |