Pinki Rani Agrawal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8360709/publications.pdf

Version: 2024-02-01

32 papers

1,716 citations

19 h-index 30 g-index

35 all docs 35 docs citations

35 times ranked 2073 citing authors

#	Article	IF	CITATIONS
1	Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites. Journal of Materials Chemistry A, 2013, 1, 9138.	10.3	282
2	MnO2 decorated graphene nanoribbons with superior permittivity and excellent microwave shielding properties. Journal of Materials Chemistry A, 2014, 2, 4256.	10.3	214
3	Lightweight and Easily Foldable MCMB-MWCNTs Composite Paper with Exceptional Electromagnetic Interference Shielding. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10600-10608.	8.0	188
4	An approach to produce single and double layer graphene from re-exfoliation of expanded graphite. Carbon, 2011, 49, 1946-1954.	10.3	136
5	Expanded graphite-based electrically conductive composites as bipolar plate for PEM fuel cell. International Journal of Hydrogen Energy, 2008, 33, 7146-7152.	7.1	127
6	Integration of MCMBs/MWCNTs with Fe ₃ O ₄ in a flexible and light weight composite paper for promising EMI shielding applications. Journal of Materials Chemistry C, 2017, 5, 322-332.	5 . 5	94
7	Lightweight, high electrical and thermal conducting carbon-rGO composites foam for superior electromagnetic interference shielding. Composites Part B: Engineering, 2019, 160, 131-139.	12.0	86
8	Excellent mechanical properties of long multiwalled carbon nanotube bridged Kevlar fabric. Carbon, 2018, 137, 104-117.	10.3	76
9	Catalytic effect of iron oxide on carbon/carbon composites during graphitization. Carbon, 1997, 35, 1753-1756.	10.3	58
10	Three-dimensional and highly ordered porous carbon–MnO ₂ composite foam for excellent electromagnetic interference shielding efficiency. RSC Advances, 2016, 6, 100713-100722.	3.6	53
11	Enhanced thermomechanical and electrical properties of multiwalled carbon nanotube paper reinforced epoxy laminar composites. Composites Part A: Applied Science and Manufacturing, 2018, 104, 129-138.	7.6	50
12	Carbon nanotube incorporated eucalyptus derived activated carbon-based novel adsorbent for efficient removal of methylene blue and eosin yellow dyes. Bioresource Technology, 2022, 344, 126231.	9.6	47
13	Free-standing flexible multiwalled carbon nanotubes paper for wearable thermoelectric power generator. Journal of Power Sources, 2020, 449, 227493.	7.8	38
14	Improved static and dynamic mechanical properties of multiscale bucky paper interleaved Kevlar fiber composites. Carbon, 2019, 152, 631-642.	10.3	37
15	Synergistic bridging effects of graphene oxide and carbon nanotube on mechanical properties of aramid fiber reinforced polycarbonate composite tape. Composites Science and Technology, 2020, 199, 108370.	7.8	34
16	The removal of pentavalent arsenic by graphite intercalation compound functionalized carbon foam from contaminated water. Journal of Hazardous Materials, 2019, 377, 274-283.	12.4	31
17	Multiwall carbon nanotubes tailored porous carbon fiber paper-based gas diffusion layer performance in polymer electrolyte membrane fuel cell. Renewable Energy, 2019, 142, 604-611.	8.9	28
18	Novel 3D lightweight carbon foam as an effective adsorbent for arsenic(<scp>v</scp>) removal from contaminated water. RSC Advances, 2016, 6, 29899-29908.	3.6	25

#	Article	IF	Citations
19	Multi-component framework derived SiC composite paper to support efficient thermal transport and high EMI shielding performance. Composites Part B: Engineering, 2019, 176, 107123.	12.0	20
20	Configuring the Porosity and Microstructure of Carbon Paper Electrode Using Pore Formers and Its Influence on the Performance of PEMFC. Energy & Energy & 16736-16745.	5.1	14
21	Multiwall carbon nanotube embedded phenolic resin-based carbon foam for the removal of As (V) from contaminated water. Materials Research Express, 2018, 5, 035601.	1.6	13
22	Surface modified exfoliated graphite as a novel adsorbent for de-fluoridation of drinking water. Materials Research Express, 2019, 6, 085605.	1.6	10
23	Current scenario of heavy metal contamination in water. , 2021, , 49-64.		9
24	Synthesis of Silicon Carbide Whiskers from Substituted Silicon Alkoxides and Rayon Fibres. Journal of Sol-Gel Science and Technology, 2002, 25, 175-179.	2.4	7
25	A process for developing spherical graphite from coal tar as high performing carbon anode for Li-ion batteries. Materials Chemistry and Physics, 2022, 281, 125836.	4.0	7
26	International interlaboratory comparison of Raman spectroscopic analysis of CVD-grown graphene. 2D Materials, 2022, 9, 035010.	4.4	7
27	Relevance of graphene oxide as nanofiller for geometrical variation in unidirectional carbon fiber/epoxy composite. Journal of Applied Polymer Science, 2021, 138, 50985.	2.6	6
28	Fabrication of lightweight and porous silicon carbide foams as excellent microwave susceptor for heat generation. Materials Chemistry and Physics, 2020, 253, 123211.	4.0	5
29	Rapid adsorption of arsenate from water on a novel hybrid of zirconia oxide anchored rGO functionalised carbon foam. Colloids and Interface Science Communications, 2021, 40, 100350.	4.1	5
30	Engineering novel synthetic strategy to develop mesocarbon microbeads for multi-functional applications. Materials Research Express, 2018, 5, 045011.	1.6	3
31	Creation of uniformly dispersed nitrogen-vacancy centers in nano-diamonds by low energy ion-irradiation. Materials Research Express, 2019, 6, 115097.	1.6	2
32	Advanced Materials for Strategic and Societal Applications. , 2020, , 811-879.		1