Yongcun Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/836059/publications.pdf

Version: 2024-02-01

86 papers 3,808 citations

172386 29 h-index 59 g-index

86 all docs 86 docs citations

86 times ranked 3400 citing authors

#	Article	IF	CITATIONS
1	Spatiotemporal variation and sources of soil heavy metals along the lower reaches of Yangtze River, China. Chemosphere, 2022, 291, 132768.	4.2	36
2	Additional sampling using in-situ portable X-ray fluorescence (PXRF) for rapid and high-precision investigation of soil heavy metals at a regional scale. Environmental Pollution, 2022, 292, 118324.	3.7	8
3	Improving correction quality for in-situ portable X-ray fluorescence (PXRF) using robust geographically weighted regression with categorical land-use types at a regional scale. Geoderma, 2022, 409, 115615.	2.3	4
4	Excessive phosphorus inputs dominate soil legacy phosphorus accumulation and its potential loss under intensive greenhouse vegetable production system. Journal of Environmental Management, 2022, 303, 114149.	3.8	11
5	Integration of a process-based model into the digital soil mapping improves the space-time soil organic carbon modelling in intensively human-impacted area. Geoderma, 2022, 409, 115599.	2.3	16
6	An Integrated Yield-Based Methodology for Improving Soil Nutrient Management at a Regional Scale. Agronomy, 2022, 12, 298.	1.3	2
7	Effects of mining on the potentially toxic elements in the surrounding soils in China: A meta-analysis. Science of the Total Environment, 2022, 821, 153562.	3.9	13
8	A joint standard-exceeding risk assessment of multiple pollutants based on robust geostatistics with categorical land-use type data: A case study of soil nitrogen and phosphorus. Environmental Pollution, 2022, 299, 118901.	3.7	5
9	Environmental capacity of heavy metals in intensive agricultural soils: Insights from geochemical baselines and source apportionment. Science of the Total Environment, 2022, 819, 153078.	3.9	20
10	Spatiotemporal changes in cropland soil organic carbon in a rapidly urbanizing area of southeastern China from 1980 to 2015. Land Degradation and Development, 2022, 33, 1323-1336.	1.8	4
11	Heavy metal accumulation in the surrounding areas affected by mining in China: Spatial distribution patterns, risk assessment, and influencing factors. Science of the Total Environment, 2022, 825, 154004.	3.9	45
12	A comparison of machine learning algorithms for mapping soil iron parameters indicative of pedogenic processes by hyperspectral imaging of intact soil profiles. European Journal of Soil Science, 2022, 73, .	1.8	8
13	Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981-2011. Soil and Tillage Research, 2021, 205, 104763.	2.6	30
14	Improving the spatial prediction accuracy of soil alkaline hydrolyzable nitrogen using GWPCAâ€GWRK. Soil Science Society of America Journal, 2021, 85, 879-892.	1.2	6
15	Spatio-temporal Changes and Associated Uncertainties of CENTURY-modelled SOC for Chinese Upland Soils, 1980–2010. Chinese Geographical Science, 2021, 31, 126-136.	1,2	1
16	Resampling with in situ field portable X-ray fluorescence spectrometry (FPXRF) to reduce the uncertainty in delineating the remediation area of soil heavy metals. Environmental Pollution, 2021, 271, 116310.	3.7	6
17	The effect of organic and conventional management practices on soil macropore structure in greenhouse vegetable production. European Journal of Soil Science, 2021, 72, 2133-2149.	1.8	6
18	A Novel Statistical Method of Defining Geochemical Baselines and Source Identification for Trace Metals in Soil in Zhangjiagang County, China. Journal of Soils and Sediments, 2021, 21, 2619-2627.	1.5	3

#	Article	IF	CITATIONS
19	Soil fertility quality assessment based on geographically weighted principal component analysis (GWPCA) in large-scale areas. Catena, 2021, 201, 105197.	2.2	14
20	Spatial Distribution and Source Apportionment of Agricultural Soil Heavy Metals in a Rapidly Developing Area in East China. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 33-39.	1.3	12
21	Incorporating Auxiliary Data of Different Spatial Scales for Spatial Prediction of Soil Nitrogen Using Robust Residual Cokriging (RRCoK). Agronomy, 2021, 11, 2516.	1.3	1
22	Source apportionment of soil nitrogen and phosphorus based on robust residual kriging and auxiliary soil-type map in Jintan County, China. Ecological Indicators, 2020, 119, 106820.	2.6	10
23	Evaluation of soil quality in major grain-producing region of the North China Plain: Integrating minimum data set and established critical limits. Ecological Indicators, 2020, 117, 106613.	2.6	22
24	Exploring the spatially varying relationships between cadmium accumulations and the main influential factors in the rice-wheat rotation system in a large-scale area. Science of the Total Environment, 2020, 736, 139565.	3.9	10
25	Enhancing apportionment of the point and diffuse sources of soil heavy metals using robust geostatistics and robust spatial receptor model with categorical soil-type data. Environmental Pollution, 2020, 265, 114964.	3.7	20
26	Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: A comparative study of China and South Korea. Environment International, 2020, 137, 105519.	4.8	92
27	Correction of in-situ portable X-ray fluorescence (PXRF) data of soil heavy metal for enhancing spatial prediction. Environmental Pollution, 2019, 254, 112993.	3.7	22
28	Assessing the effects of land use change from rice to vegetable on soil structural quality using X-ray CT. Soil and Tillage Research, 2019, 195, 104343.	2.6	37
29	An integrated approach to exploring soil fertility from the perspective of rice (Oryza sativa L.) yields. Soil and Tillage Research, 2019, 194, 104322.	2.6	7
30	Spatio-temporal changes of cropland soil pH in a rapidly industrializing region in the Yangtze River Delta of China, 1980–2015. Agriculture, Ecosystems and Environment, 2019, 272, 95-104.	2.5	38
31	Source apportionment of soil heavy metals using robust absolute principal component scores-robust geographically weighted regression (RAPCS-RGWR) receptor model. Science of the Total Environment, 2018, 626, 203-210.	3.9	68
32	Carbon pools in China's terrestrial ecosystems: New estimates based on an intensive field survey. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4021-4026.	3.3	466
33	Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4045-4050.	3.3	342
34	Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–NIR spectroscopy. Geoderma, 2018, 310, 29-43.	2.3	141
35	Quantification of Different Forms of Iron from Intact Soil Cores of Paddy Fields with Visâ€NIR Spectroscopy. Soil Science Society of America Journal, 2018, 82, 1497-1511.	1.2	6
36	Spatio-Temporal Change and Pollution Risk of Agricultural Soil Cadmium in a Rapidly Industrializing Area in the Yangtze Delta Region of China. International Journal of Environmental Research and Public Health, 2018, 15, 2743.	1.2	15

3

#	Article	IF	CITATIONS
37	Spatial uncertainty assessment of the environmental risk of soil copper using auxiliary portable X-ray fluorescence spectrometry data and soil pH. Environmental Pollution, 2018, 240, 184-190.	3.7	32
38	Uncertainty and Sensitivity Analyses for Modeling Long-Term Soil Organic Carbon Dynamics of Paddy Soils Under Different Climate-Soil-Management Combinations. Pedosphere, 2017, 27, 912-925.	2.1	4
39	Environmental and Anthropogenic Factors Driving Changes in Paddy Soil Organic Matter: A Case Study in the Middle and Lower Yangtze River Plain of China. Pedosphere, 2017, 27, 926-937.	2.1	18
40	Sensitivity and uncertainty analysis of CENTURY-modeled SOC dynamics in upland soils under different climate-soil-management conditions: a case study in China. Journal of Soils and Sediments, 2017, 17, 85-96.	1.5	8
41	Climatic effect on soil organic carbon variability as a function of spatial scale. Archives of Agronomy and Soil Science, 2017, 63, 375-387.	1.3	7
42	Rapid Determination of Carbon, Nitrogen, and Phosphorus Contents of Field Crops in China Using Visible and Nearâ€Infrared Reflectance Spectroscopy. Crop Science, 2017, 57, 475-489.	0.8	4
43	Effects of Subsetting by Parent Materials on Prediction of Soil Organic Matter Content in a Hilly Area Using Vis–NIR Spectroscopy. PLoS ONE, 2016, 11, e0151536.	1.1	17
44	Sensitivity and uncertainty analysis for the DeNitrification–DeComposition model, a case study of modeling soil organic carbon dynamics at a long-term observation site with a rice–bean rotation. Computers and Electronics in Agriculture, 2016, 124, 263-272.	3.7	22
45	Comparison of sampling schemes for the spatial prediction of soil organic matter in a typical black soil region in China. Environmental Earth Sciences, 2016, 75, 1.	1.3	11
46	Spatial uncertainty of joint health risk of multiple trace metals in rice grain in Jiaxing city, China. Environmental Sciences: Processes and Impacts, 2015, 17, 120-130.	1.7	5
47	Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis. Agriculture, Ecosystems and Environment, 2015, 204, 40-50.	2.5	195
48	Uncertainty assessment for mapping changes in soil organic matter using sparse legacy soil data and dense new-measured data in a typical black soil region of China. Environmental Earth Sciences, 2015, 73, 197-207.	1.3	12
49	Estimating the Pollution Risk of Cadmium in Soil Using a Composite Soil Environmental Quality Standard. Scientific World Journal, The, 2014, 2014, 1-9.	0.8	4
50	Impacts of human activities and sampling strategies on soil heavy metal distribution in a rapidly developing region of China. Ecotoxicology and Environmental Safety, 2014, 104, 1-8.	2.9	27
51	Distribution, sources and potential risk of HCH and DDT in soils from a typical alluvial plain of the Yangtze River Delta region, China. Environmental Geochemistry and Health, 2014, 36, 345-358.	1.8	44
52	Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China. Ecotoxicology and Environmental Safety, 2014, 108, 161-167.	2.9	150
53	Spatially Nonstationary Relationships between Copper Accumulation in Rice Grain and Some Related Soil Properties in Paddy Fields at a Regional Scale. Soil Science Society of America Journal, 2014, 78, 1765-1774.	1.2	20
54	Accumulation and health risk of heavy metals in a plot-scale vegetable production system in a peri-urban vegetable farm near Nanjing, China. Ecotoxicology and Environmental Safety, 2013, 98, 303-309.	2.9	62

#	Article	IF	CITATIONS
55	Minimum Data Set for Assessing Soil Quality in Farmland of Northeast China. Pedosphere, 2013, 23, 564-576.	2.1	89
56	Map scale effects of soil databases on modeling organic carbon dynamics for paddy soils of China. Catena, 2013, 104, 67-76.	2.2	19
57	Comparison of Three Methods for Soil Fertility Quality Spatial Simulation with Uncertainty Assessment. Soil Science Society of America Journal, 2013, 77, 2182-2191.	1.2	10
58	Uncertainty Analysis for the Evaluation of Agricultural Soil Quality Based on Digital Soil Maps. Soil Science Society of America Journal, 2012, 76, 1379-1389.	1.2	18
59	Effect of sampling density on regional soil organic carbon estimation for cultivated soils. Journal of Plant Nutrition and Soil Science, 2012, 175, 671-680.	1.1	17
60	Spatially explicit simulation of soil organic carbon dynamics in China's paddy soils. Catena, 2012, 92, 113-121.	2.2	33
61	Carbon sequestration potential of recommended management practices for paddy soils of China, 1980–2050. Geoderma, 2011, 166, 206-213.	2.3	54
62	Modeling Carbon Dynamics in Paddy Soils in Jiangsu Province of China with Soil Databases Differing in Spatial Resolution. Pedosphere, 2011, 21, 696-705.	2.1	12
63	Organochlorine Pesticides in Soils from a Typical Alluvial Plain of the Yangtze River Delta Region, China. Bulletin of Environmental Contamination and Toxicology, 2011, 87, 561-566.	1.3	13
64	Effects of prediction methods for detecting the temporal evolution of soil organic carbon in the Hilly Red Soil Region, China. Environmental Earth Sciences, 2011, 64, 319-328.	1.3	13
65	Defining soil geochemical baselines at small scales using geochemical common factors and soil organic matter as normalizers. Journal of Soils and Sediments, 2011, 11, 3-14.	1.5	32
66	Accumulation, transfer, and environmental risk of soil mercury in a rapidly industrializing region of the Yangtze River Delta, China. Journal of Soils and Sediments, 2011, 11, 607-618.	1.5	26
67	Scale effect of climate on soil organic carbon in the Uplands of Northeast China. Journal of Soils and Sediments, 2010, 10, 1007-1017.	1.5	18
68	A WebGIS system for relating genetic soil classification of China to soil taxonomy. Computers and Geosciences, 2010, 36, 768-775.	2.0	17
69	Response of soil organic carbon spatial variability to the expansion of scale in the uplands of Northeast China. Geoderma, 2010, 154, 302-310.	2.3	15
70	Cross-reference for relating Genetic Soil Classification of China with WRB at different scales. Geoderma, 2010, 155, 344-350.	2.3	165
71	Spatial interrelations and multi-scale sources of soil heavy metal variability in a typical urban–rural transition area in Yangtze River Delta region of China. Geoderma, 2010, 156, 216-227.	2.3	87
72	Effect of Land Use Conversion from Rice Paddies to Vegetable Fields on Soil Phosphorus Fractions. Pedosphere, 2010, 20, 137-145.	2.1	29

#	Article	IF	CITATIONS
73	Relationships between distributions of longevous population and trace elements in the agricultural ecosystem of Rugao County, Jiangsu, China. Environmental Geochemistry and Health, 2009, 31, 379-390.	1.8	23
74	Spatial variability assessment of soil nutrients in an intense agricultural area, a case study of Rugao County in Yangtze River Delta Region, China. Environmental Geology, 2009, 57, 1089-1102.	1.2	34
75	Changes in soil fertility parameters and the environmental effects in a rapidly developing region of China. Agriculture, Ecosystems and Environment, 2009, 129, 286-292.	2.5	62
76	Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma, 2009, 149, 325-334.	2.3	307
77	Spatial variability of soil selenium as affected by geologic and pedogenic processes and its effect on ecosystem and human health. Geochemical Journal, 2009, 43, 217-225.	0.5	11
78	Uncertainty assessment of mapping mercury contaminated soils of a rapidly industrializing city in the Yangtze River Delta of China using sequential indicator co-simulation. Environmental Monitoring and Assessment, 2008, 138, 343-355.	1.3	23
79	Major nutrient balances in small-scale vegetable farming systems in peri-urban areas in China. Nutrient Cycling in Agroecosystems, 2008, 81, 203-218.	1.1	72
80	Variation of soil organic carbon estimates in mountain regions: A case study from Southwest China. Geoderma, 2008, 146, 449-456.	2.3	73
81	Source identification and spatial variability of nitrogen, phosphorus, and selected heavy metals in surface water and sediment in the riverine systems of a peri-urban interface. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 42, 371-380.	0.9	30
82	Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma, 2007, 139, 336-345.	2.3	167
83	Using robust kriging and sequential Gaussian simulation to delineate the copper- and lead-contaminated areas of a rapidly industrialized city in Yangtze River Delta, China. Environmental Geology, 2007, 52, 1423-1433.	1.2	38
84	Carbon storage and spatial distribution patterns of paddy soils in China. Frontiers of Agriculture in China, 2007, 1, 149-154.	0.2	7
85	Map Scale Effects on Soil Organic Carbon Stock Estimation in North China. Soil Science Society of America Journal, 2006, 70, 1377-1386.	1.2	66
86	Uncertainty assessment of spatial patterns of soil organic carbon density using sequential indicator simulation, a case study of Hebei province, China. Chemosphere, 2005, 59, 1527-1535.	4.2	39