David J Lea-Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8360425/publications.pdf

Version: 2024-02-01

331670 477307 2,752 29 21 29 citations h-index g-index papers 35 35 35 3902 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology, 2010, 21, 277-286.	6.6	976
2	Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 247-255.	1.0	192
3	Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13591-13596.	7.1	159
4	Function of the Cytochrome bc 1 - aa 3 Branch of the Respiratory Network in Mycobacteria and Network Adaptation Occurring in Response to Its Disruption. Journal of Bacteriology, 2005, 187, 6300-6308.	2.2	133
5	Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome, 2019, 7, 47.	11.1	128
6	CyanoGate: A Modular Cloning Suite for Engineering Cyanobacteria Based on the Plant MoClo Syntax. Plant Physiology, 2019, 180, 39-55.	4.8	123
7	Enhancing power density of biophotovoltaics by decoupling storage and power delivery. Nature Energy, 2018, 3, 75-81.	39.5	103
8	Thylakoid Terminal Oxidases Are Essential for the Cyanobacterium <i>Synechocystis</i> sp. PCC 6803 to Survive Rapidly Changing Light Intensities Â. Plant Physiology, 2013, 162, 484-495.	4.8	97
9	The Reductase That Catalyzes Mycolic Motif Synthesis Is Required for Efficient Attachment of Mycolic Acids to Arabinogalactan. Journal of Biological Chemistry, 2007, 282, 11000-11008.	3.4	94
10	Terminal oxidase mutants of the cyanobacterium Synechocystis sp. PCC 6803 show increased electrogenic activity in biological photo-voltaic systems. Physical Chemistry Chemical Physics, 2013, 15, 13611.	2.8	74
11	Analysis of a New Mannosyltransferase Required for the Synthesis of Phosphatidylinositol Mannosides and Lipoarbinomannan Reveals Two Lipomannan Pools in Corynebacterineae. Journal of Biological Chemistry, 2008, 283, 6773-6782.	3.4	69
12	Phycobilisome-Deficient Strains of <i>Synechocystis</i> sp. PCC 6803 Have Reduced Size and Require Carbon-Limiting Conditions to Exhibit Enhanced Productivity Â. Plant Physiology, 2014, 165, 705-714.	4.8	66
13	Hydrogen production through oxygenic photosynthesis using the cyanobacterium Synechocystis sp. PCC 6803 in a bio-photoelectrolysis cell (BPE) system. Energy and Environmental Science, 2013, 6, 2682.	30.8	61
14	Proteome Mapping of a Cyanobacterium Reveals Distinct Compartment Organization and Cell-Dispersed Metabolism. Plant Physiology, 2019, 181, 1721-1738.	4.8	58
15	Distinguishing the roles of thylakoid respiratory terminal oxidases in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiology, 2016, 171, pp.00479.2016.	4.8	55
16	Current knowledge and recent advances in understanding metabolism of the model cyanobacterium <i>Synechocystis</i> sp. PCC 6803. Bioscience Reports, 2020, 40, .	2.4	55
17	Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria. Plant Physiology, 2016, 172, 1928-1940.	4.8	53
18	Acetylation of Trehalose Mycolates Is Required for Efficient MmpL-Mediated Membrane Transport in Corynebacterineae. ACS Chemical Biology, 2015, 10, 734-746.	3.4	48

#	Article	IF	CITATIONS
19	Platinum-free, graphene based anodes and air cathodes for single chamber microbial fuel cells. Journal of Materials Chemistry A, 2017, 5, 23872-23886.	10.3	45
20	Emerging Species and Genome Editing Tools: Future Prospects in Cyanobacterial Synthetic Biology. Microorganisms, 2019, 7, 409.	3.6	39
21	Generation of Marked and Markerless Mutants in Model Cyanobacterial Species. Journal of Visualized Experiments, 2016, , .	0.3	25
22	Insights into the Vertical Stratification of Microbial Ecological Roles across the Deepest Seawater Column on Earth. Microorganisms, 2020, 8, 1309.	3.6	18
23	A biophotoelectrochemical approach to unravelling the role of cyanobacterial cell structures in exoelectrogenesis. Electrochimica Acta, 2021, 395, 139214.	5.2	18
24	Cytochrome <i>c</i> _M Decreases Photosynthesis under Photomixotrophy in <i>Synechocystis</i> PCC 6803. Plant Physiology, 2020, 183, 700-716.	4.8	17
25	Expression of Alternative Nitrogenases in <i>Rhodopseudomonas palustris</i> Is Enhanced Using an Optimized Genetic Toolset for Rapid, Markerless Modifications. ACS Synthetic Biology, 2021, 10, 2167-2178.	3.8	9
26	Development of a Biotechnology Platform for the Fast-Growing Cyanobacterium Synechococcus sp. PCC 11901. Biomolecules, 2022, 12, 872.	4.0	9
27	Cryptic microbial hydrocarbon cycling. Nature Microbiology, 2021, 6, 419-420.	13.3	4
28	Editorial: Exploring the Growing Role of Cyanobacteria in Industrial Biotechnology and Sustainability. Frontiers in Microbiology, 2021, 12, 725128.	3.5	3
29	A dual compartment cuvette system for correcting scattering in whole-cell absorbance spectroscopy of photosynthetic microorganisms. Photosynthesis Research, 2022, 151, 61-69.	2.9	2