Vo V Anh

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/8360345/publications.pdf
Version: 2024-02-01

1	Numerical solution of the space fractional Fokkerâ "Planck equation. Journal of Computational and $^{\text {PP }}$ Applied Mathematics, 2004, 166, 209-219.	2.0	602
2	Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term. SIAM Journal on Numerical Analysis, 2009, 47, 1760-1781.	2.3	458
3	Stability and convergence of the difference methods for the spaceâ $€^{\prime t}$ time fractional advectionâ€"diffusion equation. Applied Mathematics and Computation, 2007, 191, 12-20.	2.2	452
4	New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation. SIAM Journal on Numerical Analysis, 2008, 46, 1079-1095.	2.3	319
5	A Fourier method for the fractional diffusion equation describing sub-diffusion. Journal of Computational Physics, 2007, 227, 886-897.	3.8	305
6	A Crank--Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation. SIAM Journal on Numerical Analysis, 2014, 52, 2599-2622.	2.3	298
7	Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation. Applied Mathematics and Computation, 2009, 212, 435-445.	2.2	217
8	Finite difference approximations for the fractional Fokkerâ€"Planck equation. Applied Mathematical Modelling, 2009, 33, 256-273.	4.2	199
9	Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation. SIAM Journal of Scientific Computing, 2010, 32, 1740-1760.	2.8	198
10	A new fractional finite volume method for solving the fractional diffusion equation. Applied Mathematical Modelling, 2014, 38, 3871-3878.	4.2	180
11	Analytical solution for the time-fractional telegraph equation by the method of separating variables. Journal of Mathematical Analysis and Applications, 2008, 338, 1364-1377.	1.0	179
12	Spectral Analysis of Fractional Kinetic Equations with Random Data. Journal of Statistical Physics, 2001, 104, 1349-1387.	1.2	155
13	Galerkin finite element approximation of symmetric space-fractional partial differential equations. Applied Mathematics and Computation, 2010, 217, 2534-2545.	2.2	154

\#	Article	IF	Citations
19	A semi-alternating direction method for a 2-D fractional FitzHughâ€"Nagumo monodomain model on an approximate irregular domain. Journal of Computational Physics, 2015, 293, 252-263.	3.8	115
20	Prediction of protein structural classes by recurrence quantification analysis based on chaos game representation. Journal of Theoretical Biology, 2009, 257, 618-626.	1.7	113
21	Approximation of the $L \tilde{A} \bigcirc v y a ̂ \notin$ "Feller advectionâ $€$ "dispersion process by random walk and finite difference method. Journal of Computational Physics, 2007, 222, 57-70.	3.8	112
22	Possible long-range dependence in fractional random fields. Journal of Statistical Planning and Inference, 1999, 80, 95-110.	0.6	111
23	Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. Journal of Computational Physics, 2015, 298, 652-660.	3.8	111
24	Measure representation and multifractal analysis of complete genomes. Physical Review E, 2001, 64, 031903.	2.1	98
25	The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA Journal of Applied Mathematics, 2008, 73, 850-872.	1.6	97
26	Finite element approximation for a modified anomalous subdiffusion equation. Applied Mathematical Modelling, 2011, 35, 4103-4116.	4.2	97
27	The analytical solution and numerical solution of the fractional diffusion-wave equation with damping. Applied Mathematics and Computation, 2012, 219, 1737-1748.	2.2	82
28	A two-stage SVM method to predict membrane protein types by incorporating amino acid classifications and physicochemical properties into a general form of Chou's PseAAC. Journal of Theoretical Biology, 2014, 344, 31-39.	1.7	82
29	Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numerical Algorithms, 2010, 54, 1-21.	1.9	79
30	Multifractal and correlation analyses of protein sequences from complete genomes. Physical Review E, 2003, 68, 021913.	2.1	77
31	Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation. Mathematics of Computation, 2012, 81, 345-366.	2.1	75
32	A RBF meshless approach for modeling a fractal mobile/immobile transport model. Applied Mathematics and Computation, 2014, 226, 336-347.	2.2	74
33	Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term timeâ€ "space fractional Blochâ€"Torrey equations on irregular convex domains. Computers and Mathematics With Applications, 2019, 78, 1637-1650.	2.7	72
34	Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA Journal of Applied Mathematics, 2015, 80, 825-838.	1.6	68
35	Origin and Phylogeny of Chloroplasts Revealed by a Simple Correlation Analysis of Complete Cenomes. Molecular Biology and Evolution, 2003, 21, 200-206.	8.9	66
36	A parabolic stochastic differential equation with fractional Brownian motion input. Statistics and Probability Letters, 1999, 41, 337-346.	0.7	65

37 Fractional diffusion and fractional heat equation. Advances in Applied Probability, 2000, 32, 1077-109 \quad Fractional Generalized Random Fields of Variable Order. Stochastic Analysis and Applications, 2004, 22, 775-799.

Determination of multifractal dimensions of complex networks by means of the sandbox algorithm.
Chaos, 2015, 25, 023103.

Numerical analysis of the Rayleighâ€"Stokes problem for a heated generalized second grade fluid with
fractional derivatives. Applied Mathematics and Computation, 2008, 204, 340-351.

Stability and convergence of an implicit numerical method for the non-linear fractional
reaction-subdiffusion process. IMA Journal of Applied Mathematics, 2009, 74, 645-667.
1.6

Maximum principle and numerical method for the multi-term timeâ€"space Rieszâ€"Caputo fractional
differential equations. Applied Mathematics and Computation, 2014, 227, 531-540.
2.2

Numerical analysis of a new spaceâ€"time variable fractional order advectionâ€"dispersion equation.
Applied Mathematics and Computation, 2014, 242, 541-550.
$2.2 \quad 53$

Phylogeny of Prokaryotes and Chloroplasts Revealed by a Simple Composition Approach on All Protein
44 Sequences from Complete Genomes Without Sequence Alignment. Journal of Molecular Evolution,
2005, 60, 538-545.

45 A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation
with variable diffusivity coefficients. Applied Mathematics and Computation, 2015, 257, 591-601.

Similarity solutions for solute transport in fractal porous media using a time- and scale-dependent dispersivity. Applied Mathematical Modelling, 2005, 29, 852-870.
4.2

Numerical methods with fourth-order spatial accuracy for variable-order nonlinear Stokesâ€ ${ }^{\text {TM }}$ first
47 problem for a heated generalized second grade fluid. Computers and Mathematics With Applications,
2011, 62, 971-986.

A characteristic difference method for the variable-order fractional advection-diffusion equation.
Journal of Applied Mathematics and Computing, 2013, 42, 371-386.

Galerkin finite element method and error analysis for the fractional cable equation. Numerical
Algorithms, 2016, 72, 447-466.

A Fourier method and an extrapolation technique for Stokesâ $€^{\text {TM }}$ first problem for a heated generalized
50 second grade fluid with fractional derivative. Journal of Computational and Applied Mathematics,
2009, 223, 777-789.
51 flows of generalized viscoelastic fluid. Computers and Mathematics With Applications, 2016, 72, Analytical solutions of multi-term time fractional differential equations and application to unsteady2.72084-2097.2.0

An implicit numerical method for the two-dimensional fractional percolation equation. Applied Mathematics and Computation, 2013, 219, 4322-4331.
57 Solving linear and nonâ€linear spaceâ€"time fractional reactionâ€"diffusion equations by the Adom
decomposition method. International Journal for Numerical Methods in Engineering, 2008, 74, 138-15

$58 \quad$| Non-Gaussian scenarios for the heat equation with singular initial conditions. Stochastic Processes |
| :--- |
| and Their Applications, 1999, 84, 91-114. |

Renormalization and homogenization of fractional diffusion equations with random data. Probability
Theory and Related Fields, 2002, 124, 381-408.
$60 \quad$ Financial Markets with Memory I: Dynamic Models. Stochastic Analysis and Applications, 2005, 23,

The analytical solution and numerical solutions for a two-dimensional multi-term time fractional
63 Numerical approximation of LÃ®vyâ€"Feller diffusion equation and its probability interpretation. Journal \quad of Computational and Applied Mathematics, 2007, 206, 1098-1115.

A novel numerical approximation for the space fractional advection-dispersion equation. IMA Journal

Tides as phase-modulated waves inducing periodic groundwater flow in coastal aquifers overlaying a
sloping impervious base. Environmental Modelling and Software, 2003, 18, 937-942.
4.5

29

On a class of minimum contrast estimators for fractional stochastic processes and fields. Journal of
Statistical Planning and Inference, 2004, 123, 161-185.

Parameter Estimation of Stochastic Processes with Long-range Dependence and Intermittency. Journal of Time Series Analysis, 2001, 22, 517-535.
1.2

28

80 Continuous-Time Stochastic Processes with Cyclical Long-Range Dependence. Australian and New

Zealand Journal of Statistics, 2004, 46, 275-296.
0.9

28
$81 \quad$ Fractal analysis of measure representation of large proteins based on the detailed HP model. Physica

Time series model based on global structure of complete genome. Chaos, Solitons and Fractals, 2001,
12, 1827-1834.
5.1

27

Semiparametric Approximation Methods in Multivariate Model Selection. Journal of Complexity, 2001,
Higher-Order Spectral Densities of Fractional Random Fields. Journal of Statistical Physics, 2003, 111 ,
$789-814$.
Multifractal analysis of geomagnetic storm and solar flare indices and their class dependence.
Journal of Ceophysical Research, 2009, 114,.

Linear filtering with fractional brownian motion. Stochastic Analysis and Applications, 1998, 16, 907-914
1.5

23
99 Scaling limit solution of a fractional Burgers equation. Stochastic Processes and Their Applications, 2001, 93, 285-300.
0.9

23

100 Whole-proteome phylogeny of large dsDNA viruses and parvoviruses through a composition vector method related to dynamical language model. BMC Evolutionary Biology, 2010, 10, 192.
3.2

23

101 Analysis of global geomagnetic variability. Nonlinear Processes in Geophysics, 2007, 14, 701-708.

1.3

22

102 Chaos game representation of the Dst index and prediction of geomagnetic storm events. Chaos, Solitons and Fractals, 2007, 31, 736-746.
5.1

21

,

21

103 Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a
1.7

21
nonlinear reaction term. Open Physics, 2013, 11, .

Multifractal temporally weighted detrended cross-correlation analysis to quantify power-law cross-correlation and its application to stock markets. Chaos, 2017, 27, 063111.
2.5

21

Stochastic models for fractal processes. Journal of Statistical Planning and Inference, 1999, 80,
105 Stochastic
0.6

20

Statistical estimation of nonstationary Gaussian processes with long-range dependence and

The genomic tree of living organisms based on a fractal model. Physics Letters, Section A: General,
 Atomic and Solid State Physics, 2003, 317, 293-302.

2.1

19

Fractional kinetic equations driven by Gaussian or infinitely divisible noise. Advances in Applied
0.7

Probability, 2005, 37, 366-392.
19

Detailed analysis of a conservative difference approximation for the time fractional diffusion
2.5

111 Detailed analysis of a conservative difference approximation for the time fract
19

A novel implicit finite difference method for the one-dimensional fractional percolation equation.
1.9

Numerical Algorithms, 2011, 56, 517-535.
19

Flow and heat transfer of power-law fluid over a rotating disk with generalized diffusion.
International Communications in Heat and Mass Transfer, 2016, 79, 81-88.
$5.6 \quad 19$
1

Financial Markets with Memory II: Innovation Processes and Expected Utility Maximization. Stochastic
Analysis and Applications, 2005, 23, 301-328.
1.5

18
115 Analytical and numerical solutions of a one-dimensional fractional-in-space diffusion equation in a
composite medium. Applied Mathematics and Computation, 2010, 216, 2248-2262.
$2.2 \quad 18$
Regularity of Backward Stochastic Volterra Integral Equations in Hilbert Spaces. Stochastic Analysis and Applications, 2010, 29, 146-168.
1.5

18

> On approximation for fractional stochastic partial differential equations on the sphere. Stochastic
> Environmental Research and Risk Assessment, 2018, 32, 2585-2603.

Numerical methods for the two-dimensional multi-term time-fractional diffusion equations.
118 Computers and Mathematics With Applications, 2017, 74, 2253-2268.
2.7

17

> 119 A space-time spectral method for time-fractional Black-Scholes equation. Applied Numerical
> Mathematics, 2021, 165, 152-166.
$2.1 \quad 17$

120 Diffusion on multifractals. Nonlinear Analysis: Theory, Methods \& Applications, 2005, 63, e2043-e2056.
1.1

16
Multifractality and Laplace spectrum of horizontal visibility graphs constructed from fractional
Brownian motions. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016,033206.

A space-time finite element method for solving linear Riesz space fractional partial differential
1.9
equations. Numerical Algorithms, 2021, 88, 499-520.
16

Estimated Generalized Least Squares for Random Coefficient Regression Models. Scandinavian Journal
1.4

15
of Statistics, 1999, 26, 31-46.
Multifractal analysis of measure representation of flood/drought grade series in the Yangtze Delta,
China, during the past millennium and their fractal model simulation. International Journal of
3.5

15
Climatology, 2010, 30, 450-457.
Multifractal analysis of solar flare indices and their horizontal visibility graphs. Nonlinear
Processes in Geophysics, 2012, 19, 657-665.
1.3

15
127 Prediction of magnetic storm events using the \<;\>D\&|t;sub\>st\&|t;/sub\>\&|t;/i\> index. 1.3
Multifractality in spaceâ€"time statistical models. Stochastic Environmental Research and Risk

131 | Multifractal Products of Stationary Diffusion Processes. Stochastic Analysis and Applications, 2009, |
| :--- |
| $27,475-499$. |

133 Analytical and numerical solutions of a multi-term time-fractional Burgersấ $\mathbb{T}^{T M}$ fluid model. Applied
Mathematics and Computation, 2019, 356, 1-12.Finite difference/finite element method for two-dimensional timeâ€"space fractional Blochâ€"Torrey134 equations with variable coefficients on irregular convex domains. Computers and Mathematics With2.7
135 Chaos game representation of functional protein sequences, and simulation and multifractal analysis
137 A fast numerical method for two-dimensional Riesz space fractional diffusion equations on a convex bounded region. Applied Numerical Mathematics, 2018, 134, 66-80.
2.1 12
Long- and short-term time series forecasting of air quality by a multi-scale framework. Environmental
138 Pollution, 2021, 271, 116381.Nonlinear least squares and maximum likelihood estimation of a heteroscedastic regression model.

Long-range dependence and second-order intermittency of two dimensional turbulence.
Environmental Modelling and Software, 1998, 13, 233-238.

The Riesz?Bessel Fractional Diffusion Equation. Applied Mathematics and Optimization, 2004, 49, 241-264.

A finite volume simulation model for saturatedâ $€^{\text {" }}$ unsaturated flow and application to Cooburrum,
Bundaberg, Queensland, Australia. Applied Mathematical Modelling, 2006, 30, 352-366.

Multifractal scaling of products of birthâ€"death processes. Bernoulli, 2009, 15, .
1.3
<i>Q</i>-Fractional Brownian Motion in Infinite Dimensions with Application to Fractional
Blackâ€"Scholes Market. Stochastic Analysis and Applications, 2009, 27, 149-175.

Analytical and numerical solutions of a twoâ€dimensional multiâ€term timeâ€fractional Oldroydâ $€ B$ model.
Numerical Methods for Partial Differential Equations, 2019, 35, 875-893.

Multifractal temporally weighted detrended cross-correlation analysis of multivariate time series.
Chaos, 2020, 30, 023134.

A novel alternating-direction implicit spectral Galerkin method for a multi-term time-space fractional diffusion equation in three dimensions. Numerical Algorithms, 2021, 86, 1443-1474.

Implicit difference approximation of the Galilei invariant fractional advection diffusion equation.
ANZIAM Journal, 0, 48, 775.

154 On rate of convergence in non-central limit theorems. Bernoulli, 2019, 25, .
1.3

10

A splitting method for stochastic goursat problem. Stochastic Analysis and Applications, 1999, 17,
315-326.

Covariance factorisation and abstract representation of generalised random fields. Bulletin of the Australian Mathematical Society, 2000, 62, 319-334.

Iterated Function System and Multifractal Analysis of Biological Sequences. International Journal of Modern Physics B, 2003, 17, 4367-4375.

Prediction of fractional Brownian motion with Hurst index less than 1/2. Bulletin of the Australian Mathematical Society, 2004, 70, 321-328.

Correlations between designability and various structural characteristics of protein lattice models.
Journal of Chemical Physics, 2007, 126, 195101.

Fuzzy C-means method with empirical mode decomposition for clustering microarray data.
International Journal of Data Mining and Bioinformatics, 2013, 7, 103.

Laplacian normalization and bi-random walks on heterogeneous networks for predicting
IncRNA-disease associations. BMC Systems Biology, 2018, 12, 122.
3.0

Phylogenetic Analysis of HIV-1 Genomes Based on the Position-Weighted K-mers Method. Entropy, 2020,
22, 255.
Radii of starlikeness and convexity for certain classes of analytic functions. Journal of Mathematical
Analysis and Applications, 1978, 64, 146-158.

165 Spatial variability of sydney air quality by cumulative semivariogram. Atmospheric Environment, 1997,
167 Distinguish Coding And Noncoding Sequences In A Complete Genome Using Fourier Transform. , 2007, ,multifractal analyses. Journal of Geophysical Research: Space Physics, 2014, 119, 7577-7586.
Identification of pre-microRNAs by characterizing their sequence order evolution information and
secondary structure graphs. BMC Bioinformatics, 2018, 19, 521.
170 No-cointegration test based on fractional differencing: Some Monte Carlo results. Journal ofStatistical Planning and Inference, 1999, 80, 257-267.
$0.6 \quad 7$
171 A central limit theorem for a random quadratic form of strictly stationary processes. Statistics and 0.77
Maximum likelihood estimation of the fractional differencing parameter in an ARFIMA model using wavelets. Mathematics and Computers in Simulation, 2002, 59, 153-161.
1.5 7

.5

199 Starlike functions with a fixed coefficient. Bulletin of the Australian Mathematical Society, 1989, 39, 145-158. 0.5 3Estimation of Spectral Densities with Multiplicative Parameter. Acta Applicandae Mathematicae, 2003,
201 Fractal tidal waves in coastal aquifers induced both anthropogenically and naturally. Environmental 4.5
Modelling and Software, 2004, 19, 1125-1130.3$0.7 \quad 3$
Log-normal, log-gamma and log-negative inverted gamma scenarios in multifractal products ofstochastic processes. Statistics and Probability Letters, 2008, 78, 1274-1282.
$1.5 \quad 3$
203 Secondary Structure Element Alignment Kernel Method for Prediction of Protein Structural Classes. Current Bioinformatics, 2014, 9, 253-257.$2.1 \quad 3$Numerical Mathematics, 2022, 172, 242-258.Hausdorff dimension of random fractals with overlaps. Bulletin of the Australian MathematicalSociety, 2002, 65, 315-328.$0.5 \quad 2$
206 Binary market models with memory. Statistics and Probability Letters, 2007, 77, 256-264.0.72
207 Chaos Game Representation of Genomes and their Simulation by Recurrent Iterated Function Systems., 2008, , 2
208 Distinguishing Coding from Non-coding Sequences in a Prokaryote Complete Genome Based on the Global Descriptor., 2009, , .2
209 Fuzzy C-means method with empirical mode decomposition for clustering microarray data. , 2010, ,2
Prediction of fractional processes with long-range dependence. Hokkaido Mathematical Journal, 2012, $0.3 \quad 2$
210 41,
1.5 2
Wavelet-Based Estimation of Anisotropic Spatiotemporal Long-Range Dependence. Stochastic Analysis 211 and Applications, 2013, $31,359-380$.
Least-Squares Estimation of Multifractional Random Fields in a Hilbert-Valued Context. Journal of Optimization Theory and Applications, 2015, 167, 888-911.1.52On LSE in regression model for long-range dependent random fields on spheres. Statistics, 2019, 53,1131-1151.$0.6 \quad 2$

Strong convergence of stochastic taylor expansions of two-parameter random fields. Stochastic
Analysis and Applications, 1997, 15, 137-149.

Non-central limit theorems and convergence rates. Theory of Probability and Mathematical Statistics, 2018, 95, 3-15.

Novel numerical techniques for the finite moment log stable computational model for European call option. Numerical Methods for Partial Differential Equations, 2020, 36, 1537-1554.

An Information-Entropy Position-Weighted K-Mer Relative Measure for Whole Genome Phylogeny Reconstruction. Frontiers in Genetics, 2021, 12, 766496.

Fractal and Dynamical Language Methods to Construct Phylogenetic Tree Based on Protein Sequences from Complete Genomes. Lecture Notes in Computer Science, 2005, , 337-347.

Nonlinear filtering of a system of logistic equations. Bulletin of the Australian Mathematical Society, 1997, 55, 219-238.

Application of Hilbert-Space Methods to Random Field Modelling and Estimation. American Journal of Mathematical and Management Sciences, 2001, 21, 263-282.
0.9

0

Protein Structure Classification Using Local Holder Exponents Estimated by Wavelet Transform., 2008, , .

Numerical treatment of a two-dimensional variable-order fractional nonlinear reaction-diffusion model. , 2014, , .

A novel genome signature based on inter-nucleotide distances profiles for visualization of metagenomic data. Physica A: Statistical Mechanics and Its Applications, 2017, 482, 87-94.
2.6

> Statistical estimation of nonstationary Gaussian processes with long-range dependence and intermittency. , 2010, , 438-463.

Chaos Game Representation of Mitochondrial Genomes. Advances in Bioinformatics and Biomedical Engineering Book Series, 0, , 28-38.

