Abdul Salam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/835899/publications.pdf

Version: 2024-02-01

		331259	395343
56	1,851	21	33
papers	citations	h-index	g-index
59	59	59	975
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Seed priming with zinc oxide nanoparticles downplayed ultrastructural damage and improved photosynthetic apparatus in maize under cobalt stress. Journal of Hazardous Materials, 2022, 423, 127021.	6.5	122
2	Exploring the Adaptive Responses of Plants to Abiotic Stresses Using Transcriptome Data. Agriculture (Switzerland), 2022, 12, 211.	1.4	22
3	Biotechnological approaches in agriculture and environmental management - bacterium Kocuria rhizophila 14ASP as heavy metal and salt- tolerant plant growth- promoting strain. Biologia (Poland), 2021, 76, 3091-3105.	0.8	16
4	Salicylic acid underpins silicon in ameliorating chromium toxicity in rice by modulating antioxidant defense, ion homeostasis and cellular ultrastructure. Plant Physiology and Biochemistry, 2021, 166, 1001-1013.	2.8	74
5	Amelioration of AsV toxicity by concurrent application of ZnO-NPs and Se-NPs is associated with differential regulation of photosynthetic indexes, antioxidant pool and osmolytes content in soybean seedling. Ecotoxicology and Environmental Safety, 2021, 225, 112738.	2.9	37
6	Ethylene participates in zinc oxide nanoparticles induced biochemical, molecular and ultrastructural changes in rice seedlings. Ecotoxicology and Environmental Safety, 2021, 226, 112844.	2.9	27
7	Signals in the Soil., 2020, , .		19
8	A Survey on Subsurface Signal Propagation. Smart Cities, 2020, 3, 1513-1561.	5. 5	16
9	Zenneck Waves in Decision Agriculture: An Empirical Verification and Application in EM-Based Underground Wireless Power Transfer. Smart Cities, 2020, 3, 308-340.	5.5	11
10	On-Site and External Energy Harvesting in Underground Wireless. Electronics (Switzerland), 2020, 9, 681.	1.8	23
11	A Statistical Impulse Response Model Based on Empirical Characterization of Wireless Underground Channels. IEEE Transactions on Wireless Communications, 2020, 19, 5966-5981.	6.1	21
12	Wireless Underground Communications in Sewer and Stormwater Overflow Monitoring: Radio Waves through Soil and Asphalt Medium. Information (Switzerland), 2020, 11, 98.	1.7	36
13	Internet of Things for Sustainable Community Development. Internet of Things, 2020, , .	1.3	71
14	Internet of Things for Sustainable Community Development: Introduction and Overview. Internet of Things, 2020, , 1-31.	1.3	21
15	Internet of Things for Sustainability: Perspectives in Privacy, Cybersecurity, and Future Trends. Internet of Things, 2020, , 299-327.	1.3	28
16	Internet of Things for Environmental Sustainability and Climate Change. Internet of Things, 2020, , 33-69.	1.3	27
17	Internet of Things in Agricultural Innovation and Security. Internet of Things, 2020, , 71-112.	1.3	32
18	Internet of Things for Water Sustainability. Internet of Things, 2020, , 113-145.	1.3	18

#	Article	lF	Citations
19	Internet of Things for Sustainable Forestry. Internet of Things, 2020, , 147-181.	1.3	20
20	Internet of Things in Sustainable Energy Systems. Internet of Things, 2020, , 183-216.	1.3	22
21	Internet of Things for Sustainable Human Health. Internet of Things, 2020, , 217-242.	1.3	18
22	Internet of Things for Sustainable Mining. Internet of Things, 2020, , 243-271.	1.3	31
23	Internet of Things in Water Management and Treatment. Internet of Things, 2020, , 273-298.	1.3	25
24	Signals in the Soil: An Introduction to Wireless Underground Communications. , 2020, , 3-38.		7
25	Current Advances in Internet of Underground Things. , 2020, , 321-356.		3
26	Decision Agriculture., 2020,, 357-378.		2
27	Autonomous Irrigation Management in Decision Agriculture. , 2020, , 379-398.		3
28	Variable Rate Applications in Decision Agriculture. , 2020, , 399-423.		1
29	Electromagnetic Characteristics of the Soil. , 2020, , 39-59.		1
30	Wireless Underground Channel Modeling. , 2020, , 61-121.		1
31	Modulation Schemes and Connectivity in Wireless Underground Channel. , 2020, , 125-166.		1
32	Underground Wireless Channel Bandwidth and Capacity. , 2020, , 167-188.		3
33	Underground Phased Arrays and Beamforming Applications. , 2020, , 217-248.		1
34	Signals in the Soil: Subsurface Sensing. , 2020, , 251-297.		7
35	Soil Moisture and Permittivity Estimation. , 2020, , 299-317.		1
36	On Burial Depth of Underground Antenna in Soil Horizons for Decision Agriculture. Lecture Notes in Computer Science, 2020, , 17-31.	1.0	8

#	Article	IF	Citations
37	Internet of Things in Smart Agriculture: Enabling Technologies. , 2019, , .		56
38	Underground Environment Aware MIMO Design Using Transmit and Receive Beamforming in Internet of Underground Things. Lecture Notes in Computer Science, 2019, , 1-15.	1.0	4
39	Urban Underground Infrastructure Monitoring IoT: The Path Loss Analysis. , 2019, , .		16
40	Subsurface MIMO: A Beamforming Design in Internet of Underground Things for Digital Agriculture Applications. Journal of Sensor and Actuator Networks, 2019, 8, 41.	2.3	34
41	An Underground Radio Wave Propagation Prediction Model for Digital Agriculture. Information (Switzerland), 2019, 10, 147.	1.7	35
42	A Theoretical Model of Underground Dipole Antennas for Communications in Internet of Underground Things. IEEE Transactions on Antennas and Propagation, 2019, 67, 3996-4009.	3.1	64
43	Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiology and Biochemistry, 2019, 139, 569-577.	2.8	148
44	Design of Subsurface Phased Array Antennas for Digital Agriculture Applications. , 2019, , .		23
45	Di-Sense: In situ real-time permittivity estimation and soil moisture sensing using wireless underground communications. Computer Networks, 2019, 151, 31-41.	3.2	83
46	Effect of urea, bio-fertilizers and their interaction on the growth, yield and yield attributes of Cyamopsis Tetragonoloba. Indian Journal of Agricultural Research, 2019, , .	0.0	2
47	Vehicle-to-barrier communication during real-world vehicle crash tests. Computer Communications, 2018, 127, 172-186.	3.1	37
48	Internet of underground things in precision agriculture: Architecture and technology aspects. Ad Hoc Networks, 2018, 81, 160-173.	3.4	202
49	Internet of underground things: Sensing and communications on the field for precision agriculture. , 2018, , .		47
50	Soft Microreactors for the Deposition of Conductive Metallic Traces on Planar, Embossed, and Curved Surfaces. Advanced Functional Materials, 2018, 28, 1803020.	7.8	44
51	EM-Based Wireless Underground Sensor Networks. , 2018, , 247-285.		33
52	Smart underground antenna arrays: A soil moisture adaptive beamforming approach. , 2017, , .		44
53	Wireless underground channel diversity reception with multiple antennas for internet of underground things. , 2017, , .		36
54	Towards Internet of Underground Things in smart lighting: A statistical model of wireless underground channel. , 2017, , .		36

#	Article	IF	CITATIONS
55	Pulses in the sand: Impulse response analysis of wireless underground channel. , 2016, , .		44
56	Impacts of Soil Type and Moisture on the Capacity of Multi-Carrier Modulation in Internet of Underground Things. , 2016, , .		51