
Yuanfang Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/835894/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomass antioxidant silica supported tea polyphenols with green and high-efficiency free radical capturing activity for rubber composites. Composites Science and Technology, 2022, 220, 109290.	3.8	16
2	Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. Journal of Colloid and Interface Science, 2021, 584, 1-10.	5.0	86
3	Rational design for enhancing mechanical and conductive properties of Ti3C2 MXene based elastomer composites. Composites Communications, 2021, 25, 100725.	3.3	8
4	A high-performance, thermal and electrical conductive elastomer composite based on Ti3C2 MXene. Composites Part A: Applied Science and Manufacturing, 2021, 145, 106292.	3.8	28
5	Effects of modified silica on the coâ€vulcanization kinetics and mechanical performances of natural rubber/styrene–butadiene rubber blends. Journal of Applied Polymer Science, 2020, 137, 48838.	1.3	7
6	Novel Hybrid Biomass Anti-Aging Filler for Styrene-Butadiene Rubber Composites with Antioxidative and Reinforcing Properties. Materials, 2020, 13, 4045.	1.3	7
7	The Synergistic Effect of Ionic Liquid-Modified Expandable Graphite and Intumescent Flame-Retardant on Flame-Retardant Rigid Polyurethane Foams. Materials, 2020, 13, 3095.	1.3	22
8	Fabrication of a versatile composite material with three-dimensional superhydrophobic for aquatic show. Chemical Engineering Journal, 2020, 398, 125362.	6.6	14
9	Facile synthesis of composite films featuring bulk superhydrophobicity, durability, and repairability for aquatic show. Composites Science and Technology, 2020, 197, 108231.	3.8	15
10	Synthesis of mechanically durable superhydrophobic polymer materials with roughness-regeneration performance. Composites Part A: Applied Science and Manufacturing, 2020, 133, 105861.	3.8	23
11	Polydimethylsiloxane-based superhydrophobic membranes: fabrication, durability, repairability, and applications. Polymer Chemistry, 2020, 11, 2370-2380.	1.9	13
12	Robust and repairable bulk polymeric coatings with continuous superhydrophobicity for design control and underwater display. Composites Part B: Engineering, 2020, 186, 107799.	5.9	12
13	A Robust and Versatile Continuous Super-Repellent Polymeric Film for Easy Repair and Underwater Display. ACS Applied Materials & Interfaces, 2020, 12, 6677-6687.	4.0	19
14	Reutilization of waste printed circuit boards nonmetallic powders in elastomer composites: Significant improvements of curing and mechanical properties. Polymer Composites, 2020, 41, 2224-2232.	2.3	5
15	Effects of decoppering pretreatment on accelerated weathering behaviors of waste printed circuit boards powders reinforced polypropylene composites. Journal of Applied Polymer Science, 2019, 136, 48224.	1.3	4
16	Enhanced Mechanical and Processing Property of Styrene-butadiene Rubber Composites with Novel Silica-supported Reactive Processing Additive. Fibers and Polymers, 2019, 20, 1696-1704.	1.1	7
17	Mesoporous silica as nanocarrier of antioxidant for highly anti-aging elastomer composites. Polymer Degradation and Stability, 2019, 169, 108987.	2.7	11
18	Immobilization of rubber additive on graphene for high-performance rubber composites. Journal of Colloid and Interface Science, 2019, 550, 190-198.	5.0	24

#	Article	IF	CITATIONS
19	Functionalized Halloysite Nanotubes–Silica Hybrid for Enhanced Curing and Mechanical Properties of Elastomers. Polymers, 2019, 11, 883.	2.0	17
20	Structure and Flame-Retardant Actions of Rigid Polyurethane Foams with Expandable Graphite. Polymers, 2019, 11, 686.	2.0	25
21	Facile, solvent-free fabrication of a robust 3-dimensional continuous superhydrophobic coating with wettability control and abrasion healing. Chemical Engineering Journal, 2019, 368, 18-28.	6.6	41
22	A Comprehensive Study on The Accelerated Weathering Properties of Polypropylene—Wood Composites with Non-Metallic Materials of Waste-Printed Circuit Board Powders. Materials, 2019, 12, 876.	1.3	14
23	Three-dimensional self-similar super-repellent films for underwater display and wettability switching. Journal of Materials Chemistry C, 2019, 7, 13548-13558.	2.7	6
24	<i>In situ</i> fabrication of graphene oxide supported nano silica for the preparation of rubber composites with high mechanical strength and thermal conductivity. Polymer Composites, 2019, 40, E1633.	2.3	9
25	Enhancing interfacial and mechanical strength of styreneâ€butadiene rubber composites via <i>in situ</i> fabricated halloysite nanotubes/silica nano hybrid. Polymer Composites, 2019, 40, 677-684.	2.3	7
26	Functionalized HNTs nanocluster vulcanized natural rubber with high filler-rubber interaction. Chemical Engineering Journal, 2018, 336, 748-756.	6.6	46
27	High reactive sulphide chemically supported on silica surface to prepare functional nanoparticle. Applied Surface Science, 2018, 442, 673-681.	3.1	10
28	Enhanced Mechanical Performance and Antioxidative Efficiency of Styrene–Butadiene Rubber via 4-Aminodiphenylamine Functionalized Mesoporous Silica. Industrial & Engineering Chemistry Research, 2018, 57, 4935-4940.	1.8	20
29	Enhanced interfacial interaction and antioxidative behavior of novel halloysite nanotubes/silica hybrid supported antioxidant in styrene-butadiene rubber. Applied Surface Science, 2018, 441, 798-806.	3.1	31
30	Study on the dispersion of carbon black/silica in SBR/BR composites and its properties by adding epoxidized natural rubber as a compatilizer. Polymer Composites, 2018, 39, 377-385.	2.3	32
31	Characterization of Waste Printed Circuit Boards Nonmetals and its Reutilization as Reinforcing Filler in Unsaturated Polyester Resin. Journal of Polymers and the Environment, 2018, 26, 1311-1319.	2.4	21
32	Inorganic and Organic Hybrid Nanoparticles as Multifunctional Crosslinkers for Rubber Vulcanization with High-Filler Rubber Interaction. Polymers, 2018, 10, 1138.	2.0	11
33	Determination of Molecular Structures of Acetone Solutes from Natural Rubber by Pyrolysis Gas Chromatography Coupled to Mass Spectrometry. Chromatographia, 2018, 81, 1085-1096.	0.7	2
34	One-pot method to reduce and functionalize graphene oxide via vulcanization accelerator for robust elastomer composites with high thermal conductivity. Composites Science and Technology, 2018, 164, 267-273.	3.8	24
35	Quantitative analysis of the higher fatty acids in acetone solutes (AS) from raw natural rubber and their impacts on the structure and properties of NR/silica composites. Industrial Crops and Products, 2018, 121, 80-89.	2.5	9
36	Effect of novel supported vulcanizing agent on the interfacial interaction and strain-induced crystallization properties of natural rubber nanocomposites. Polymer, 2018, 148, 390-399.	1.8	26

#	Article	IF	CITATIONS
37	In-situ fabrication of halloysite nanotubes/silica nano hybrid and its application in unsaturated polyester resin. Applied Surface Science, 2017, 407, 130-136.	3.1	38
38	Enhancing interfacial interaction and mechanical properties of styrene-butadiene rubber composites via silica-supported vulcanization accelerator. Composites Part A: Applied Science and Manufacturing, 2017, 96, 129-136.	3.8	55
39	One-step approach to reduce and modify graphene oxide via vulcanization accelerator and its application for elastomer reinforcement. Chemical Engineering Journal, 2017, 317, 51-59.	6.6	36
40	Method for improving the mechanical performance and thermal stability of unsaturated polyester resin/waste-printed circuit board nonmetals composites via isocyanate chemistry. Journal of Applied Polymer Science, 2017, 134, 45129.	1.3	6
41	Preparation of halloysite nanotubes loaded antioxidant and its antioxidative behaviour in natural rubber. Polymer Degradation and Stability, 2017, 141, 19-25.	2.7	30
42	Influence of acetone extract from natural rubber on the structure and interface interaction in NR/silica composites. Applied Surface Science, 2017, 423, 43-52.	3.1	33
43	Effect of acetone extract from natural rubber on the structure and interface interaction in NR/CB composites. RSC Advances, 2017, 7, 26458-26467.	1.7	19
44	Preparation of a biodegradable poly(vinyl alcohol)–starch composite film and its application in pesticide controlled release. Journal of Applied Polymer Science, 2017, 134, 45051.	1.3	21
45	Selfâ€crosslinkable epoxidized natural rubber–silica hybrids. Journal of Applied Polymer Science, 2017, 134, .	1.3	27
46	Understanding the effect of filler shape induced immobilized rubber on the interfacial and mechanical strength of rubber composites. Polymer Testing, 2017, 58, 31-39.	2.3	30
47	Simultaneous reduction and functionalization of graphene oxide via antioxidant for highly aging resistant and thermal conductive elastomer composites. Composites Science and Technology, 2017, 151, 156-163.	3.8	58
48	Reinforcement of Natural Rubber: The Use of <i>in Situ</i> Regenerated Cellulose from Alkaline–Urea–Aqueous System. Macromolecules, 2017, 50, 7211-7221.	2.2	55
49	Preparation of Halloysite Nanotubes–Silica Hybrid Supported Vulcanization Accelerator for Enhancing Interfacial and Mechanical Strength of Rubber Composites. Industrial & Engineering Chemistry Research, 2017, 56, 9135-9142.	1.8	25
50	Elastomer Reinforced with Regenerated Chitin from Alkaline/Urea Aqueous System. ACS Applied Materials & Interfaces, 2017, 9, 26460-26467.	4.0	33
51	Sustainable utilization of waste printed circuit boards powders in HDPE-wood composites: Synergistic effects of multicomponents on structure and properties. Journal of Cleaner Production, 2017, 164, 840-847.	4.6	27
52	Novel functional silica nanoparticles for rubber vulcanization and reinforcement. Composites Science and Technology, 2017, 144, 11-17.	3.8	89
53	A novel hybrid filler of halloysite nanotubes/silica fabricated by electrostatic self-assembly. Materials Letters, 2017, 188, 327-330.	1.3	23

54 Solidâ€phase preparation method of silicaâ€supported 2,2â€2â€methylenebis(6â€tertâ€butylâ€4â€methylâ€phenol) and its antioxidative behavior in styreneâ€butadiene rubber. Journal of Applied Polymer Science, 2016, 133, .

#	Article	IF	CITATIONS
55	Interfacial mechano-chemical grafting in styrene-butadiene rubber/halloysite nanotubes composites. Polymer Testing, 2016, 54, 29-39.	2.3	20
56	Enhanced oil resistance and mechanical properties of nitrile butadiene rubber/lignin composites modified by epoxy resin. Journal of Applied Polymer Science, 2016, 133, .	1.3	14
57	Styrene butadiene rubber/carbon black composites modified by imidazole derivatives. International Journal of Polymer Analysis and Characterization, 2016, 21, 447-457.	0.9	5
58	Enhancing mechanical properties of styrene–butadiene rubber/silica nanocomposites by in situ interfacial modification with a novel rare-earth complex. Composites Part A: Applied Science and Manufacturing, 2016, 87, 297-309.	3.8	30
59	Antioxidative behavior of a novel samarium complex in styrene-butadiene rubber/silica composites. Polymer Degradation and Stability, 2016, 133, 201-210.	2.7	27
60	A comprehensive study on lignin as a green alternative of silica in natural rubber composites. Polymer Testing, 2016, 54, 176-185.	2.3	96
61	Morphology and performance of styrene butadiene rubber filled with modified graphite nanoplatelet and carbon black. Polymers for Advanced Technologies, 2016, 27, 830-840.	1.6	13
62	Surface modification of halloysite nanotubes by vulcanization accelerator and properties of styrene-butadiene rubber nanocomposites with modified halloysite nanotubes. Applied Surface Science, 2016, 366, 193-201.	3.1	40
63	Characterization of effects of thermal-oxidative aging on styrene-butadiene rubber/silica composites with vitamin C-lanthanum complex. International Journal of Polymer Analysis and Characterization, 2016, 21, 1-10.	0.9	16
64	A facile and green preparation of nanosilica-supported antioxidant and its reinforcement and antioxidation effect on styrene-butadiene rubber. International Journal of Polymer Analysis and Characterization, 2016, 21, 185-197.	0.9	13
65	Effect of multifunctional samarium lysine dithiocarbamate on curing properties, static and dynamic mechanical properties of SBR/silica composites. RSC Advances, 2016, 6, 269-280.	1.7	12
66	Preparation of halloysite nanotubes supported 2-mercaptobenzimidazole and its application in natural rubber. Composites Part A: Applied Science and Manufacturing, 2015, 73, 63-71.	3.8	62
67	Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites. Applied Surface Science, 2015, 328, 306-313.	3.1	150
68	Surface modification of silica with N-cyclohexyl-2-benzothiazole sulfenamide for styrene–butadiene rubber composites with dramatically improved mechanical property. Materials Letters, 2015, 145, 41-43.	1.3	27
69	A method to improve the mechanical performance of styrene-butadiene rubber via vulcanization accelerator modified silica. Composites Science and Technology, 2015, 117, 46-53.	3.8	78
70	Use of precipitated silica with silanol groups as an inorganic chain extender in polyurethane. Materials and Design, 2015, 87, 324-330.	3.3	30
71	Reinforcement and reinforcing mechanism of styrene–butadiene rubber by antioxidant-modified silica. Composites Part A: Applied Science and Manufacturing, 2015, 78, 303-310.	3.8	47
72	Influence of nanocrystalline cellulose on structure and properties of natural rubber/silica composites. Polymer Composites, 2015, 36, 861-868.	2.3	20

#	Article	IF	CITATIONS
73	Preparation of silica-supported 2-mercaptobenzimidazole and its antioxidative behavior in styrene-butadiene rubber. Polymer Degradation and Stability, 2014, 110, 260-267.	2.7	52
74	Hybrid of silver nanowire and pristine-graphene by liquid-phase exfoliation for synergetic effects on electrical conductive composites. RSC Advances, 2014, 4, 41876-41885.	1.7	22
75	Particle configuration and properties of poly(vinyl chloride)/halloysite nanotubes nanocomposites via in situ suspension polymerization. Polymer Composites, 2014, 35, 856-863.	2.3	11
76	One-step synthesis of metal nanoparticle decorated graphene by liquid phase exfoliation. Journal of Materials Chemistry, 2012, 22, 20342.	6.7	51
77	Structure and Properties of Poly(vinyl chloride)/Halloysite Nanotubes Nanocomposites. Journal of Macromolecular Science - Physics, 2012, 51, 968-981.	0.4	17
78	Effect of Alkali Treatment on Structure and Mechanical Properties of Acrylonitrile–Butadiene–Styrene/Bamboo Fiber Composites. Journal of Macromolecular Science - Physics, 2012, 51, 2232-2244.	0.4	27
79	Synthesis and characterization of a dimethacrylates monomer with low shrinkage and water sorption for dental application. Journal of Applied Polymer Science, 2012, 125, 114-120.	1.3	19
80	Properties of 2,2â€Bis[<i>p</i> â€{2′â€hydroxyâ€3′â€methacryloxy propoxy)phenyl]propane/Isobornyl (Meth)acrylate copolymers. Journal of Applied Polymer Science, 2012, 126, 1527-1531.	1.3	18
81	Rubber/clay nanocomposites by combined latex compounding and melt mixing: A masterbatch process. Materials & Design, 2012, 34, 825-831.	5.1	46
82	Preparation of highly conductive adhesives by in situ generated and sintered silver nanoparticles during curing process. Journal of Materials Science: Materials in Electronics, 2012, 23, 22-30.	1.1	16
83	Styrene-Butadiene Rubber/Halloysite Nanotubes Composites Modified by Epoxidized Natural Rubber. Journal of Nanoscience and Nanotechnology, 2011, 11, 10958-10962.	0.9	20
84	Structure and mechanical properties of rare-earth complex La-GDTC modified silica/SBR composites. Polymer, 2011, 52, 2701-2710.	1.8	55
85	Superhydrophobic surfaces with nanofibers or nanorods based on thiophene derivatives. Applied Physics Letters, 2010, 96, .	1.5	4
86	Styrene-butadiene rubber/halloysite nanotubes composites modified by epoxidized natural rubber. , 2010, , .		0
87	The Effect of Dy(III) Complex with 2-Mercaptobenzimidazole on the Thermo-Oxidation Aging Behavior of Natural Rubber Vulcanizates. International Journal of Polymeric Materials and Polymeric Biomaterials, 2010, 59, 663-679.	1.8	30
88	Synthesis and characterization of 3-benzothiazolthio-1-propyltriethoxylsilane and its reinforcement for styrene-butadiene rubber/silica composites. Journal of Applied Polymer Science, 2009, 112, 1967-1973.	1.3	18
89	Effect of unsaturated hydroxyl-fatty acid modified nano-CaCO3 on the morphological and rheological behavior of PP. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2009, 4, 75-82.	0.4	Ο
90	Structure and flammability properties of NRâ€organoclay nanocomposites. Polymer Composites, 2009, 30, 107-110.	2.3	11

#	Article	IF	CITATIONS
91	Effect of 3â€propionylthioâ€lâ€propyltrimethoxylsilane on structure, mechanical, and dynamic mechanical properties of NR/silica composites. Polymer Composites, 2009, 30, 955-961.	2.3	23
92	Reinforcing and Flame-Retardant Effects of Halloysite Nanotubes on LLDPE. Polymer-Plastics Technology and Engineering, 2009, 48, 607-613.	1.9	123
93	Preparation and properties of natural rubber nanocomposites with solidâ€ s tate organomodified montmorillonite. Journal of Applied Polymer Science, 2008, 107, 2786-2792.	1.3	61
94	Study on Crystallization Behavior of Solid-Phase Graft Copolymers of Polypropylene with Maleic Anhydride and Methyl Methacrylate. Polymer-Plastics Technology and Engineering, 2008, 47, 996-1001.	1.9	3
95	Novel blocked mercaptosilane (3-propionylthio-1- propyltrimethoxylsilane) for natural rubber/silica composite reinforcement in various curing systems. E-Polymers, 2008, 8, .	1.3	2
96	Photopolymerization and properties of fluoreneâ€based dimethacrylate monomer used as a root canal sealer. Advances in Polymer Technology, 2008, 27, 108-116.	0.8	8
97	Preparation, structure and properties of nitrile–butadiene rubber–organoclay nanocomposites by reactive mixing intercalation method. Journal of Applied Polymer Science, 2006, 100, 1905-1913.	1.3	58
98	Thermal degradation of the polyimide synthesized from 4,4?-(hexafluoroisopropylidene) diphthalic dianhydride and 4,4?-diaminodiphenylmethane. Journal of Applied Polymer Science, 2004, 91, 2295-2301.	1.3	12
99	Miscibility and crystallization behavior of the solution-blended sulfonated poly(phenylene oxide)/ poly(styrene-co-4-vinyl pyridine) blend. Journal of Applied Polymer Science, 2001, 81, 2843-2848.	1.3	2
100	Synthesis and characterization of solid-phase graft copolymer of polypropylene with styrene and maleic anhydride. Journal of Applied Polymer Science, 2000, 78, 2482-2487.	1.3	43