
François Riobé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/835886/publications.pdf Version: 2024-02-01

FRANÃSOIS RIORÃO

#	Article	IF	CITATIONS
1	Hierarchical Chiral Expression from the Nano- to Mesoscale in Synthetic Supramolecular Helical Fibers of a Nonamphiphilic <i>C</i> ₃ -Symmetrical I€-Functional Molecule. Journal of the American Chemical Society, 2011, 133, 8344-8353.	6.6	154
2	Terbium(III) Luminescent Complexes as Millisecond-Scale Viscosity Probes for Lifetime Imaging. Journal of the American Chemical Society, 2017, 139, 7693-7696.	6.6	97
3	Isotopically enriched polymorphs of dysprosium single molecule magnets. Chemical Communications, 2017, 53, 3575-3578.	2.2	59
4	Crystallophore: a versatile lanthanide complex for protein crystallography combining nucleating effects, phasing properties, and luminescence. Chemical Science, 2017, 8, 5909-5917.	3.7	58
5	Twists and turns in the hierarchical self-assembly pathways of a non-amphiphilic chiral supramolecular material. Chemical Communications, 2012, 48, 4552.	2.2	57
6	Supramolecular electroactive organogel and conducting nanofibers with C3-symmetrical architectures. Journal of Materials Chemistry, 2009, 19, 4495.	6.7	56
7	Synthesis, Electronic Properties and WOLED Devices of Planar Phosphorusâ€Containing Polycyclic Aromatic Hydrocarbons. Chemistry - A European Journal, 2015, 21, 6547-6556.	1.7	54
8	Archaeal acetoacetyl-CoA thiolase/HMG-CoA synthase complex channels the intermediate via a fused CoA-binding site. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3380-3385.	3.3	44
9	Luminescence, chiroptical, magnetic and <i>ab initio</i> crystal-field characterizations of an enantiopure helicoidal Yb(<scp>iii</scp>) complex. Inorganic Chemistry Frontiers, 2021, 8, 914-926.	3.0	43
10	Solid‧tate Nearâ€Infrared Circularly Polarized Luminescence from Chiral Yb ^{III} ‧ingleâ€Molecule Magnet. Chemistry - A European Journal, 2021, 27, 7362-7366.	1.7	43
11	Efficient Photomodulation of Visible Eu(III) and Invisible Yb(III) Luminescences using DTE Photochromic Ligands for Optical Encryption. Advanced Functional Materials, 2020, 30, 2002943.	7.8	40
12	Electroactive oxazoline ligands. Coordination Chemistry Reviews, 2010, 254, 1523-1533.	9.5	37
13	Mono―and Bis(tetrathiafulvalene)â€1,3,5â€Triazines as Covalently Linked Donor–Acceptor Systems: Structural, Spectroscopic, and Theoretical Investigations. Chemistry - A European Journal, 2009, 15, 380-387.	1.7	35
14	The multicatalytic compartment of propionyl-CoA synthase sequesters a toxic metabolite. Nature Chemical Biology, 2018, 14, 1127-1132.	3.9	34
15	C2-symmetric chiral tetrathiafulvalene-bis(oxazolines) (TTF-BOX): new precursors for organic materials and electroactive metal complexes. Chemical Communications, 2009, , 3753.	2.2	26
16	Tetrathiafulvalene-1,3,5-triazines as (Multi)Donor–Acceptor Systems with Tunable Charge Transfer: Structural, Photophysical, and Theoretical Investigations. Inorganic Chemistry, 2013, 52, 5023-5034.	1.9	24
17	Evidencing under-barrier phenomena in a Yb(<scp>iii</scp>) SMM: a joint luminescence/neutron diffraction/SQUID study. Inorganic Chemistry Frontiers, 2019, 6, 3152-3157.	3.0	24
18	Dual Light and Redox Control of NIR Luminescence with Complementary Photochromic and Organometallic Antennae. Journal of the American Chemical Society, 2019, 141, 20026-20030.	6.6	24

#	Article	IF	CITATIONS
19	Helicenic Complexes of Lanthanides: Influence of the fâ€Element on the Intersystem Crossing Efficiency and Competition between Luminescence and Oxygen Sensitization. European Journal of Inorganic Chemistry, 2019, 2019, 118-125.	1.0	24
20	Intriguing Effects of Halogen Substitution on the Photophysical Properties of 2,9-(Bis)halo-Substituted Phenanthrolinecopper(I) Complexes. Inorganic Chemistry, 2019, 58, 7730-7745.	1.9	23
21	Luminescenceâ€Driven Electronic Structure Determination in a Textbook Dimeric Dy ^{III} â€Based Singleâ€Molecule Magnet. Chemistry - A European Journal, 2020, 26, 4389-4395.	1.7	23
22	Photophysical and Magnetic Properties in Complexes Containing 3d/4f Elements and Chiral Phenanthroline-Based Helicate-Like Ligands. European Journal of Inorganic Chemistry, 2017, 2017, 2100-2111.	1.0	22
23	Radical cation salts of BEDT-TTF, enantiopure tetramethyl-BEDT-TTF, and TTF-Oxazoline (TTF-Ox) donors with the homoleptic TRISPHAT anion. New Journal of Chemistry, 2011, 35, 2279.	1.4	21
24	Lanthanide complexes involving multichelating TTF-based ligands. Inorganic Chemistry Frontiers, 2017, 4, 604-617.	3.0	21
25	Protein crystal structure determination with the crystallophore, a nucleating and phasing agent. Journal of Applied Crystallography, 2019, 52, 722-731.	1.9	21
26	Tetrathiafulvalene–oxazoline ligands in the iridium catalyzed enantioselective hydrogenation of arylimines. Tetrahedron: Asymmetry, 2007, 18, 1877-1882.	1.8	20
27	Paramagnetic DOSY: An Accurate Tool for the Analysis of the Supramolecular Interactions between Lanthanide Complexes and Proteins. Chemistry - A European Journal, 2016, 22, 18123-18131.	1.7	19
28	Unveiling the Binding Modes of the Crystallophore, a Terbiumâ€based Nucleating and Phasing Molecular Agent for Protein Crystallography. Chemistry - A European Journal, 2018, 24, 9739-9746.	1.7	19
29	Selective monosulfoxidation of tetrathiafulvalenes into chiral TTFâ€sulfoxides. Chirality, 2009, 21, 818-825.	1.3	18
30	Sensitive detection of enantiomeric excess in different acids through chiral induction in an oligo(p-phenylenevinylene) aggregate. Organic and Biomolecular Chemistry, 2012, 10, 9152.	1.5	17
31	Coordination Complexes of P-Containing Polycyclic Aromatic Hydrocarbons: Optical Properties and Solid-State Supramolecular Assembly. Organometallics, 2017, 36, 2502-2511.	1.1	16
32	Luminescent dysprosium single-molecule magnets made from designed chiral BINOL-derived bisphosphate ligands. Inorganic Chemistry Frontiers, 2021, 8, 963-976.	3.0	16
33	Teaching an old molecule new tricks: evidence and rationalisation of the slow magnetisation dynamics in [DyTp ₂ Acac]. Inorganic Chemistry Frontiers, 2018, 5, 1346-1353.	3.0	15
34	Bis(tetrathiafulvalenes) with aromatic bridges: electron delocalization in the oxidized species through EPR and theoretical studies. Physical Chemistry Chemical Physics, 2010, 12, 9650.	1.3	13
35	Luminescence and Singleâ€Moleculeâ€Magnet Behaviour in Lanthanide Coordination Complexes Involving Benzothiazoleâ€Based Tetrathiafulvalene Ligands. European Journal of Inorganic Chemistry, 2018, 2018, 458-468.	1.0	13
36	Cationic Biphotonic Lanthanide Luminescent Bioprobes Based on Functionalized Crossâ€Bridged Cyclam Macrocycles. ChemPhysChem, 2020, 21, 1036-1043.	1.0	13

François Riobé

#	Article	IF	CITATIONS
37	Twoâ€Color Threeâ€State Luminescent Lanthanide Core–Shell Crystals. Chemistry - A European Journal, 2017, 23, 1784-1788.	1.7	12
38	Solid-state <i>versus</i> solution investigation of a luminescent chiral BINOL-derived bisphosphate single-molecule magnet. Inorganic Chemistry Frontiers, 2021, 8, 947-962.	3.0	12
39	Polyanionic Polydentate Europium Complexes as Ultrabright One―or Twoâ€photon Bioprobes. ChemPhysChem, 2018, 19, 3318-3324.	1.0	11
40	Redox-Modulations of Photophysical and Single-molecule Magnet Properties in Ytterbium Complexes Involving Extended-TTF Triads. Molecules, 2020, 25, 492.	1.7	11
41	Synthesis and Photophysical Properties of 1,1,4,4â€Tetracyanobutadienes Derived from Ynamides Bearing Fluorophores**. Chemistry - A European Journal, 2022, 28, .	1.7	10
42	Strategies toward phosphorus-containing PAHs and the effect of P-substitution on the electronic properties. Pure and Applied Chemistry, 2017, 89, 341-355.	0.9	9
43	Circularly polarized luminescence of Eu(III) complexes with chiral 1,1′â€biâ€2â€naphtolâ€derived bisphosphate ligands. Chirality, 2022, 34, 34-47.	² 1.3	9
44	Efficient luminescence control in dithienylethene functionalized cyclen macrocyclic lanthanide complexes. Inorganic Chemistry Frontiers, 2020, 7, 2979-2989.	3.0	7
45	Capturing the dynamic association between a tris-dipicolinate lanthanide complex and a decapeptide: a combined paramagnetic NMR and molecular dynamics exploration. Physical Chemistry Chemical Physics, 2021, 23, 11224-11232.	1.3	6
46	Monitoring the Production of High Diffraction-Quality Crystals of Two Enzymes in Real Time Using In Situ Dynamic Light Scattering. Crystals, 2020, 10, 65.	1.0	3
47	Influence of Divalent Cations in the Protein Crystallization Process Assisted by Lanthanide-Based Additives. Inorganic Chemistry, 2021, 60, 15208-15214.	1.9	3
48	Magnetic and Photo-Physical Properties of Lanthanide Dinuclear Complexes Involving the 4,5-Bis(2-Pyridyl-N-Oxidemethylthio)-4′,5′-Dicarboxylic Acid-Tetrathiafulvalene-, Dimethyl Ester Ligand. Inorganics, 2015, 3, 554-572.	1.2	2
49	Tracking Crystallophore Nucleating Properties: Setting Up a Database for Statistical Analysis. Crystal Growth and Design, 2020, 20, 5322-5329.	1.4	2
50	Tuning Excited-State Properties of [2.2]Paracyclophane-Based Antennas to Ensure Efficient Sensitization of Lanthanide Ions or Singlet Oxygen Generation. Inorganic Chemistry, 2021, 60, 16194-16203.	1.9	1
51	An all-in-one lanthanide complex to overcome the two major bottlenecks in protein crystallography. Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s51-s52.	0.0	0
52	Overcoming two major chokepoints of protein crystallography with lanthanide complexes. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C1083-C1083.	0.0	0
53	Crystallophore, a unique nucleating and phasing agent for biocrystallography. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e144-e144.	0.0	0
54	Crystal production and structure solution thanks to the nucleating and phasing agent, crystallophore. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e58-e58.	0.0	0

#	Article	IF	CITATIONS
55	Luminescent and Sublimable Binaphthyl-Based Field-Induced Lanthanide Single-Molecule Magnets. Chemistry Squared, 0, , .	0.0	0