Christoffer Clemmensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8357363/publications.pdf

Version: 2024-02-01

60 papers 5,384 citations

32 h-index 61 g-index

67 all docs

67 docs citations

times ranked

67

8909 citing authors

#	Article	IF	CITATIONS
1	FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature, 2014, 509, 183-188.	13.7	810
2	Animal models of obesity and diabetes mellitus. Nature Reviews Endocrinology, 2018, 14, 140-162.	4.3	563
3	Blood BDNF concentrations reflect brain-tissue BDNF levels across species. International Journal of Neuropsychopharmacology, 2011, 14, 347-353.	1.0	533
4	A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nature Medicine, 2015, 21, 27-36.	15.2	481
5	Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nature Medicine, 2017, 23, 623-630.	15.2	282
6	Gut-Brain Cross-Talk in Metabolic Control. Cell, 2017, 168, 758-774.	13.5	218
7	Unimolecular Polypharmacy for Treatment of Diabetes and Obesity. Cell Metabolism, 2016, 24, 51-62.	7.2	198
8	Chemical Hybridization of Glucagon and Thyroid Hormone Optimizes Therapeutic Impact for Metabolic Disease. Cell, 2016, 167, 843-857.e14.	13.5	153
9	Will the COVID-19 pandemic worsen the obesity epidemic?. Nature Reviews Endocrinology, 2020, 16, 469-470.	4.3	135
10	Reappraisal of GIP Pharmacology for Metabolic Diseases. Trends in Molecular Medicine, 2016, 22, 359-376.	3 . 5	128
11	GLP-1/glucagon receptor co-agonism for treatment of obesity. Diabetologia, 2017, 60, 1851-1861.	2.9	126
12	GLP-1/Glucagon Coagonism Restores Leptin Responsiveness in Obese Mice Chronically Maintained on an Obesogenic Diet. Diabetes, 2014, 63, 1422-1427.	0.3	116
13	Exercise increases circulating GDF15 in humans. Molecular Metabolism, 2018, 9, 187-191.	3.0	109
14	Emerging hormonal-based combination pharmacotherapies for the treatment of metabolic diseases. Nature Reviews Endocrinology, 2019, 15, 90-104.	4.3	92
15	Monomeric GLP-1/GIP/glucagon triagonism corrects obesity, hepatosteatosis, and dyslipidemia in female mice. Molecular Metabolism, 2017, 6, 440-446.	3.0	87
16	Divergent effects of resistance and endurance exercise on plasma bile acids, FGF19, and FGF21 in humans. JCI Insight, 2018, 3, .	2.3	77
17	Plasma Metabolome Profiling of Resistance Exercise and Endurance Exercise in Humans. Cell Reports, 2020, 33, 108554.	2.9	74
18	Emerging opportunities for the treatment of metabolic diseases: Glucagon-like peptide-1 based multi-agonists. Molecular and Cellular Endocrinology, 2015, 418, 42-54.	1.6	69

#	Article	IF	Citations
19	Pharmacological but not physiological GDF15 suppresses feeding and the motivation to exercise. Nature Communications, 2021, 12, 1041.	5.8	69
20	Hypothalamic leptin action is mediated by histone deacetylase 5. Nature Communications, 2016, 7, 10782.	5.8	68
21	Molecular Integration of Incretin and Glucocorticoid Action Reverses Immunometabolic Dysfunction and Obesity. Cell Metabolism, 2017, 26, 620-632.e6.	7.2	66
22	Dual melanocortinâ€4 receptor and GLP â€1 receptor agonism amplifies metabolic benefits in dietâ€induced obese mice. EMBO Molecular Medicine, 2015, 7, 288-298.	3.3	59
23	Oral l-Arginine Stimulates GLP-1 Secretion to Improve Glucose Tolerance in Male Mice. Endocrinology, 2013, 154, 3978-3983.	1.4	58
24	Fibroblast activation protein (FAP) as a novel metabolic target. Molecular Metabolism, 2016, 5, 1015-1024.	3.0	56
25	l-Arginine improves multiple physiological parameters in mice exposed to diet-induced metabolic disturbances. Amino Acids, 2012, 43, 1265-1275.	1.2	49
26	The l-α-amino acid receptor GPRC6A is expressed in the islets of Langerhans but is not involved in l-arginine-induced insulin release. Amino Acids, 2013, 44, 383-390.	1.2	46
27	Coordinated targeting of cold and nicotinic receptors synergistically improves obesity and type 2 diabetes. Nature Communications, 2018, 9, 4304.	5.8	41
28	Metabolic syndrome and extensive adipose tissue inflammation in morbidly obese Göttingen minipigs. Molecular Metabolism, 2018, 16, 180-190.	3.0	41
29	Celastrol-Induced Weight Loss Is Driven by Hypophagia and Independent From UCP1. Diabetes, 2018, 67, 2456-2465.	0.3	39
30	Increased susceptibility to diet-induced obesity in GPRC6A receptor knockout mice. Journal of Endocrinology, 2013, 217, 151-160.	1.2	33
31	Long-Acting Neurotensin Synergizes With Liraglutide to Reverse Obesity Through a Melanocortin-Dependent Pathway. Diabetes, 2019, 68, 1329-1340.	0.3	33
32	Loss of melanocortin-4 receptor function attenuates HPA responses to psychological stress. Psychoneuroendocrinology, 2014, 42, 98-105.	1.3	32
33	Renaissance of leptin for obesity therapy. Diabetologia, 2016, 59, 920-927.	2.9	31
34	Robust <scp>GLP</scp> â€1 secretion by basic <scp>L</scp> â€amino acids does not require the <scp>GPRC6A</scp> receptor. Diabetes, Obesity and Metabolism, 2017, 19, 599-603.	2.2	28
35	GDF15 in Appetite and Exercise: Essential Player or Coincidental Bystander?. Endocrinology, 2022, 163, .	1.4	26
36	Time-resolved hypothalamic open flow micro-perfusion reveals normal leptin transport across the blood–brain barrier in leptin resistant mice. Molecular Metabolism, 2018, 13, 77-82.	3.0	25

#	Article	IF	Citations
37	Effect of bariatric surgery on plasma GDF15 in humans. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E615-E621.	1.8	25
38	Thyroid hormone receptor α in skeletal muscle is essential for T3â€mediated increase in energy expenditure. FASEB Journal, 2020, 34, 15480-15491.	0.2	25
39	Glucometabolic consequences of acute and prolonged inhibition of fatty acid oxidation. Journal of Lipid Research, 2020, 61, 10-19.	2.0	23
40	The scaffold protein p62 regulates adaptive thermogenesis through ATF2 nuclear target activation. Nature Communications, 2020, 11, 2306.	5.8	21
41	Current and Emerging Treatment Options in Diabetes Care. Handbook of Experimental Pharmacology, 2015, 233, 437-459.	0.9	20
42	Role of Energy Excretion in Human Body Weight Regulation. Trends in Endocrinology and Metabolism, 2020, 31, 705-708.	3.1	20
43	Determination of thyroid hormones in mouse tissues by isotope-dilution microflow liquid chromatography–mass spectrometry method. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1033-1034, 413-420.	1.2	19
44	CB1 and GLP-1 Receptors Cross Talk Provides New Therapies for Obesity. Diabetes, 2021, 70, 415-422.	0.3	19
45	Coordinated increase in skeletal muscle fiber area and expression of IGF-I with resistance exercise in elderly post-operative patients. Growth Hormone and IGF Research, 2010, 20, 134-140.	0.5	18
46	Enhanced voluntary wheel running in GPRC6A receptor knockout mice. Physiology and Behavior, 2013, 118, 144-151.	1.0	16
47	Discovery of thymosin \hat{l}^24 as a human exerkine and growth factor. American Journal of Physiology - Cell Physiology, 2021, 321, C770-C778.	2.1	16
48	Designing Poly-agonists for Treatment of Metabolic Diseases: Challenges and Opportunities. Drugs, 2019, 79, 1187-1197.	4.9	15
49	GLP-1/dexamethasone inhibits food reward without inducing mood and memory deficits in mice. Neuropharmacology, 2019, 151, 55-63.	2.0	15
50	The unidentified hormonal defense against weight gain. PLoS Biology, 2020, 18, e3000629.	2.6	15
51	Extreme duration exercise affects old and younger men differently. Acta Physiologica, 2022, 235, e13816.	1.8	14
52	Beta-Hydroxybutyrate Suppresses Hepatic Production of the Ghrelin Receptor Antagonist LEAP2. Endocrinology, 2022, 163, .	1.4	10
53	Pharmacological targeting of $\hat{l}\pm3\hat{l}^24$ nicotinic receptors improves peripheral insulin sensitivity in mice with diet-induced obesity. Diabetologia, 2020, 63, 1236-1247.	2.9	9
54	Emerging Polyâ€Agonists for Obesity and Type 2 Diabetes. Obesity, 2017, 25, 1647-1649.	1.5	7

#	Article	IF	CITATIONS
55	Pirt deficiency has subtle female-specific effects on energy and glucose metabolism in mice. Molecular Metabolism, 2019, 23, 75-81.	3.0	6
56	Muscarinic receptors in energy homeostasis: Physiology and pharmacology. Basic and Clinical Pharmacology and Toxicology, 2020, 126, 66-76.	1.2	6
57	The Pentapeptide RM-131 Promotes Food Intake and Adiposity in Wildtype Mice but Not in Mice Lacking the Ghrelin Receptor. Frontiers in Nutrition, 2014, 1, 31.	1.6	5
58	Divergent Roles of $\hat{l}\pm 5$ and \hat{l}^24 Nicotinic Receptor Subunits in Food Reward and Nicotine-induced Weight Loss in Male Mice. Endocrinology, 2022, 163, .	1.4	3
59	RANKL regulates testicular cancer growth and Denosumab treatment has suppressive effects on GCNIS and advanced seminoma. British Journal of Cancer, 2022, 127, 408-421.	2.9	2
60	Unforeseen role for glucocorticoids in combinatorial anti-obesity pharmacology. Molecular Metabolism, 2016, 5, 435-436.	3.0	0