## Ana Balea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8357018/publications.pdf Version: 2024-02-01



ANA RALEA

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose, 2016, 23, 57-91.                                                                                                                  | 4.9 | 197       |
| 2  | Nanocellulose for Industrial Use. , 2018, , 74-126.                                                                                                                                                                                   |     | 105       |
| 3  | Industrial Application of Nanocelluloses in Papermaking: A Review of Challenges, Technical Solutions,<br>and Market Perspectives. Molecules, 2020, 25, 526.                                                                           | 3.8 | 86        |
| 4  | Nanocelluloses: Natural-Based Materials for Fiber-Reinforced Cement Composites. A Critical Review.<br>Polymers, 2019, 11, 518.                                                                                                        | 4.5 | 82        |
| 5  | Chitosan grafted/cross-linked with biodegradable polymers: A review. International Journal of<br>Biological Macromolecules, 2021, 178, 325-343.                                                                                       | 7.5 | 72        |
| 6  | Assessing the influence of refining, bleaching and TEMPO-mediated oxidation on the production of more sustainable cellulose nanofibers and their application as paper additives. Industrial Crops and Products, 2017, 97, 374-387.    | 5.2 | 55        |
| 7  | Pickering Emulsions Containing Cellulose Microfibers Produced by Mechanical Treatments as<br>Stabilizer in the Food Industry. Applied Sciences (Switzerland), 2019, 9, 359.                                                           | 2.5 | 53        |
| 8  | Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose, 2018, 25, 269-280.                                                                                             | 4.9 | 52        |
| 9  | Synergies between cellulose nanofibers and retention additives to improve recycled paper properties and the drainage process. Cellulose, 2017, 24, 2987-3000.                                                                         | 4.9 | 43        |
| 10 | Comparison Of Mechanical And Chemical Nanocellulose As Additives To Reinforce Recycled<br>Cardboard. Scientific Reports, 2020, 10, 3778.                                                                                              | 3.3 | 42        |
| 11 | In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production.<br>Molecules, 2019, 24, 1800.                                                                                                        | 3.8 | 40        |
| 12 | Nanocellulose characterization challenges. BioResources, 2021, 16, 4382-4410.                                                                                                                                                         | 1.0 | 34        |
| 13 | A reproducible method to characterize the bulk morphology of cellulose nanocrystals and nanofibers by transmission electron microscopy. Cellulose, 2020, 27, 4871-4887.                                                               | 4.9 | 33        |
| 14 | Identification of Recalcitrant Stickies and Their Sources in Newsprint Production. Industrial &<br>Engineering Chemistry Research, 2008, 47, 6239-6250.                                                                               | 3.7 | 32        |
| 15 | Valorization of Corn Stalk by the Production of Cellulose Nanofibers to Improve Recycled Paper<br>Properties. BioResources, 2016, 11, .                                                                                               | 1.0 | 31        |
| 16 | Critical comparison of the properties of cellulose nanofibers produced from softwood and<br>hardwood through enzymatic, chemical and mechanical processes. International Journal of<br>Biological Macromolecules, 2022, 205, 220-230. | 7.5 | 31        |
| 17 | Cellulose nanofibers and chitosan to remove flexographic inks from wastewaters. Environmental<br>Science: Water Research and Technology, 2019, 5, 1558-1567.                                                                          | 2.4 | 30        |
| 18 | Effect of Bleached Eucalyptus and Pine Cellulose Nanofibers on the Physico-Mechanical Properties of<br>Cartonboard. BioResources, 2016, 11, .                                                                                         | 1.0 | 28        |

Ana Balea

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Interactions between cellulose nanofibers and retention systems in flocculation of recycled fibers.<br>Cellulose, 2017, 24, 677-692.                                                                                       | 4.9  | 28        |
| 20 | Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper.<br>Cellulose, 2018, 25, 1339-1351.                                                                                      | 4.9  | 25        |
| 21 | Application of cellulose nanofibers to remove water-based flexographic inks from wastewaters.<br>Environmental Science and Pollution Research, 2017, 24, 5049-5059.                                                        | 5.3  | 22        |
| 22 | Optimization of reagent consumption in TEMPO-mediated oxidation of Eucalyptus cellulose to obtain cellulose nanofibers. Cellulose, 2022, 29, 6611-6627.                                                                    | 4.9  | 22        |
| 23 | Lignocellulosic micro/nanofibers from wood sawdust applied to recycled fibers for the production of paper bags. International Journal of Biological Macromolecules, 2017, 105, 664-670.                                    | 7.5  | 19        |
| 24 | Study of The Reaction Mechanism to Produce Nanocellulose-Graft-Chitosan Polymer. Nanomaterials,<br>2018, 8, 883.                                                                                                           | 4.1  | 19        |
| 25 | Combined effect of sodium carboxymethyl cellulose, cellulose nanofibers and drainage aids in recycled paper production process. Carbohydrate Polymers, 2018, 183, 201-206.                                                 | 10.2 | 18        |
| 26 | Correlation between rheological measurements and morphological features of lignocellulosic<br>micro/nanofibers from different softwood sources. International Journal of Biological<br>Macromolecules, 2021, 187, 789-799. | 7.5  | 17        |
| 27 | Green Production of Glycerol Ketals with a Clay-Based Heterogeneous Acid Catalyst. Applied Sciences<br>(Switzerland), 2019, 9, 4488.                                                                                       | 2.5  | 14        |
| 28 | Recycled Fibers for Sustainable Hybrid Fiber Cement Based Material: A Review. Materials, 2021, 14, 2408.                                                                                                                   | 2.9  | 14        |
| 29 | Gel Point as Measurement of Dispersion Degree of Nano-Cellulose Suspensions and Its Application in<br>Papermaking. Nanomaterials, 2022, 12, 790.                                                                           | 4.1  | 9         |
| 30 | Learning by doing: Chem-E-Car® motivating experience. Education for Chemical Engineers, 2019, 26, 24-29.                                                                                                                   | 4.8  | 8         |
| 31 | Fiber reinforced cement based composites. , 2021, , 597-648.                                                                                                                                                               |      | 4         |
| 32 | Modelling the Mineralization of Formaldehyde by Treatment with Nitric Acid. Water (Switzerland),<br>2020, 12, 1567.                                                                                                        | 2.7  | 3         |