
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8357016/publications.pdf Version: 2024-02-01

YUWAL DOP

#	Article	IF	CITATIONS
1	Senolytic elimination of Cox2-expressing senescent cells inhibits the growth of premalignant pancreatic lesions. Gut, 2022, 71, 345-355.	6.1	26
2	Liquid biopsy reveals collateral tissue damage in cancer. JCI Insight, 2022, 7, .	2.3	32
3	Universal lung epithelium DNA methylation markers for detection of lung damage in liquid biopsies. European Respiratory Journal, 2022, 60, 2103056.	3.1	10
4	B cell-derived cfDNA after primary BNT162b2 mRNA vaccination anticipates memory B cells and SARS-CoV-2 neutralizing antibodies. Med, 2022, 3, 468-480.e5.	2.2	2
5	Detecting cell-of-origin and cancer-specific methylation features of cell-free DNA from Nanopore sequencing. Genome Biology, 2022, 23, .	3.8	40
6	Towards systematic nomenclature for cell-free DNA. Human Genetics, 2021, 140, 565-578.	1.8	42
7	ChIP-seq of plasma cell-free nucleosomes identifies gene expression programs of the cells of origin. Nature Biotechnology, 2021, 39, 586-598.	9.4	81
8	Biphasic dynamics of beta cell mass in a mouse model of congenital hyperinsulinism: implications for type 2 diabetes. Diabetologia, 2021, 64, 1133-1143.	2.9	12
9	Lessons from applied large-scale pooling of 133,816 SARS-CoV-2 RT-PCR tests. Science Translational Medicine, 2021, 13, .	5.8	66
10	Early sample tagging and pooling enables simultaneous SARS-CoV-2 detection and variant sequencing. Science Translational Medicine, 2021, 13, eabj2266.	5.8	9
11	In vitro expansion of cirrhosis derived liver epithelial cells with defined small molecules. Stem Cell Research, 2021, 56, 102523.	0.3	5
12	What is a β cell? – Chapter I in the Human Islet Research Network (HIRN) review series. Molecular Metabolism, 2021, 53, 101323.	3.0	20
13	Remote immune processes revealed by immune-derived circulating cell-free DNA. ELife, 2021, 10, .	2.8	28
14	Circulating Unmethylated Insulin DNA As a Biomarker of Human Beta Cell Death: A Multi-laboratory Assay Comparison. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 781-791.	1.8	17
15	The core clock transcription factor BMAL1 drives circadian β-cell proliferation during compensatory regeneration of the endocrine pancreas. Genes and Development, 2020, 34, 1650-1665.	2.7	13
16	Building an international consortium for tracking coronavirus health status. Nature Medicine, 2020, 26, 1161-1165.	15.2	23
17	A framework for identifying regional outbreak and spread of COVID-19 from one-minute population-wide surveys. Nature Medicine, 2020, 26, 634-638.	15.2	122
18	Multiplexing DNA methylation markers to detect circulating cell-free DNA derived from human pancreatic l² cells. JCI Insight, 2020, 5, .	2.3	34

#	Article	IF	CITATIONS
19	The Effect Of Various Types Of Exercise On Cell-free Circulating DNA. Medicine and Science in Sports and Exercise, 2020, 52, 1103-1104.	0.2	0
20	miR-17-92 and miR-106b-25 clusters regulate beta cell mitotic checkpoint and insulin secretion in mice. Diabetologia, 2019, 62, 1653-1666.	2.9	14
21	Digital Droplet PCR for Monitoring Tissueâ€6pecific Cell Death Using DNA Methylation Patterns of Circulating Cellâ€Free DNA. Current Protocols in Molecular Biology, 2019, 127, e90.	2.9	19
22	mTORC1-to-AMPK switching underlies β cell metabolic plasticity during maturation and diabetes. Journal of Clinical Investigation, 2019, 129, 4124-4137.	3.9	80
23	Sleeve Gastrectomy Improves Glycemia Independent of Weight Loss by Restoring Hepatic Insulin Sensitivity. Diabetes, 2018, 67, 1079-1085.	0.3	42
24	Non-invasive detection of human cardiomyocyte death using methylation patterns of circulating DNA. Nature Communications, 2018, 9, 1443.	5.8	147
25	Beta Cell Death by Cell-free DNA and Outcome After Clinical Islet Transplantation. Transplantation, 2018, 102, 978-985.	0.5	40
26	Monitoring liver damage using hepatocyte-specific methylation markers in cell-free circulating DNA. JCI Insight, 2018, 3, .	2.3	94
27	Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nature Communications, 2018, 9, 5068.	5.8	584
28	β-Cell DNA Damage Response Promotes Islet Inflammation in Type 1 Diabetes. Diabetes, 2018, 67, 2305-2318.	0.3	35
29	Principles of DNA methylation and their implications for biology and medicine. Lancet, The, 2018, 392, 777-786.	6.3	436
30	Postnatal Exocrine Pancreas Growth by Cellular Hypertrophy Correlates with a Shorter Lifespan in Mammals. Developmental Cell, 2018, 45, 726-737.e3.	3.1	32
31	Inhibition of mTORC1 by ER stress impairs neonatal β-cell expansion and predisposes to diabetes in the Akita mouse. ELife, 2018, 7, .	2.8	39
32	Beta cell heterogeneity: an evolving concept. Diabetologia, 2017, 60, 1363-1369.	2.9	40
33	Conditional islet hypovascularisation does not preclude beta cell expansion during pregnancy in mice. Diabetologia, 2017, 60, 1051-1056.	2.9	9
34	Transcriptional Noise and Somatic Mutations in the Aging Pancreas. Cell Metabolism, 2017, 26, 809-811.	7.2	11
35	Genome-wide genetic and epigenetic analyses of pancreatic acinar cell carcinomas reveal aberrations in genome stability. Nature Communications, 2017, 8, 1323.	5.8	53
36	Pancreatic β-Cells Express the Fetal Islet Hormone Gastrin in Rodent and Human Diabetes. Diabetes, 2017, 66, 426-436.	0.3	47

YUVAL DOR

#	Article	IF	CITATIONS
37	Metabolic Stress and Compromised Identity of Pancreatic Beta Cells. Frontiers in Genetics, 2017, 08, 21.	1.1	120
38	Islet cells share promoter hypomethylation independently of expression, but exhibit cell-type–specific methylation in enhancers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13525-13530.	3.3	49
39	PAX6 maintains β cell identity by repressing genes of alternative islet cell types. Journal of Clinical Investigation, 2016, 127, 230-243.	3.9	126
40	Dynamical compensation in physiological circuits. Molecular Systems Biology, 2016, 12, 886.	3.2	67
41	VEGF regulates relative allocation of Isl1 + cardiac progenitors to myocardial and endocardial lineages. Mechanisms of Development, 2016, 142, 40-49.	1.7	7
42	Vascular development in the vertebrate pancreas. Developmental Biology, 2016, 420, 67-78.	0.9	21
43	The Genetic Program of Pancreatic Î ² -Cell Replication In Vivo. Diabetes, 2016, 65, 2081-2093.	0.3	66
44	Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proceedings of the United States of America, 2016, 113, E1826-34.	3.3	492
45	p16Ink4a-induced senescence of pancreatic beta cells enhances insulin secretion. Nature Medicine, 2016, 22, 412-420.	15.2	252
46	Phosphorylated Ribosomal Protein S6 Is Required for Akt-Driven Hyperplasia and Malignant Transformation, but Not for Hypertrophy, Aneuploidy and Hyperfunction of Pancreatic β-Cells. PLoS ONE, 2016, 11, e0149995.	1.1	21
47	Loss of Liver Kinase B1 (LKB1) in Beta Cells Enhances Glucose-stimulated Insulin Secretion Despite Profound Mitochondrial Defects. Journal of Biological Chemistry, 2015, 290, 20934-20946.	1.6	36
48	Weaning Triggers a Maturation Step of Pancreatic \hat{I}^2 Cells. Developmental Cell, 2015, 32, 535-545.	3.1	120
49	GO-G1 Transition and the Restriction Point in Pancreatic β-Cells In Vivo. Diabetes, 2014, 63, 578-584.	0.3	27
50	Short-term overexpression of VEGF-A in mouse beta cells indirectly stimulates their proliferation and protects against diabetes. Diabetologia, 2014, 57, 140-147.	2.9	19
51	Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice. Nature Biotechnology, 2014, 32, 76-83.	9.4	159
52	LKB1 and AMPK differentially regulate pancreatic β ell identity. FASEB Journal, 2014, 28, 4972-4985.	0.2	71
53	Type 2 Diabetes and Congenital Hyperinsulinism Cause DNA Double-Strand Breaks and p53 Activity in β Cells. Cell Metabolism, 2014, 19, 109-121.	7.2	123
54	Systemic Regulation of the Age-Related Decline of Pancreatic β-Cell Replication. Diabetes, 2013, 62, 2843-2848.	0.3	112

#	Article	IF	CITATIONS
55	The Plastic Pancreas. Developmental Cell, 2013, 26, 3-7.	3.1	82
56	AMPK Regulates ER Morphology and Function in Stressed Pancreatic β-Cells via Phosphorylation of DRP1. Molecular Endocrinology, 2013, 27, 1706-1723.	3.7	98
57	Phosphorylation of Ribosomal Protein S6 Attenuates DNA Damage and Tumor Suppression during Development of Pancreatic Cancer. Cancer Research, 2013, 73, 1811-1820.	0.4	69
58	Beta-Cell Dedifferentiation and Type 2 Diabetes. New England Journal of Medicine, 2013, 368, 572-573.	13.9	77
59	Conditional Hypovascularization and Hypoxia in Islets Do Not Overtly Influence Adult β-Cell Mass or Function. Diabetes, 2013, 62, 4165-4173.	0.3	23
60	Gastrin: A Distinct Fate of Neurogenin3 Positive Progenitor Cells in the Embryonic Pancreas. PLoS ONE, 2013, 8, e70397.	1.1	43
61	The Expression of the Beta Cell-Derived Autoimmune Ligand for the Killer Receptor Nkp46 Is Attenuated in Type 2 Diabetes. PLoS ONE, 2013, 8, e74033.	1.1	14
62	Diabetes Risk Gene and Wnt Effector Tcf7l2/TCF4 Controls Hepatic Response to Perinatal and Adult Metabolic Demand. Cell, 2012, 151, 1595-1607.	13.5	202
63	Pancreatic Beta Cells in Very Old Mice Retain Capacity for Compensatory Proliferation. Journal of Biological Chemistry, 2012, 287, 27407-27414.	1.6	59
64	A Transgenic Mouse Marking Live Replicating Cells Reveals InÂVivo Transcriptional Program of Proliferation. Developmental Cell, 2012, 23, 681-690.	3.1	54
65	Role of the ductal transcription factors HNF6 and Sox9 in pancreatic acinar-to-ductal metaplasia. Gut, 2012, 61, 1723-1732.	6.1	109
66	Engineered Vascular Beds Provide Key Signals to Pancreatic Hormone-Producing Cells. PLoS ONE, 2012, 7, e40741.	1.1	57
67	Control of Pancreatic Î ² Cell Regeneration by Glucose Metabolism. Cell Metabolism, 2011, 13, 440-449.	7.2	266
68	Growth-limiting role of endothelial cells in endoderm development. Developmental Biology, 2011, 352, 267-277.	0.9	38
69	miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors. EMBO Journal, 2011, 30, 835-845.	3.5	260
70	Ngn3+ endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium. Developmental Biology, 2011, 359, 26-36.	0.9	68
71	A mouse model for sleeve gastrectomy: Applications for diabetes research. Microsurgery, 2011, 31, 66-71.	0.6	15
72	Recognition and Killing of Human and Murine Pancreatic β Cells by the NK Receptor NKp46. Journal of Immunology, 2011, 187, 3096-3103.	0.4	53

YUVAL DOR

#	Article	IF	CITATIONS
73	The activating receptor NKp46 is essential for the development of type 1 diabetes. Nature Immunology, 2010, 11, 121-128.	7.0	157
74	The Histone Deacetylase Sirt6 Regulates Glucose Homeostasis via Hif1α. Cell, 2010, 140, 280-293.	13.5	880
75	Sustained <i>Neurog3</i> expression in hormone-expressing islet cells is required for endocrine maturation and function. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9715-9720.	3.3	143
76	LKB1 Regulates Pancreatic \hat{I}^2 Cell Size, Polarity, and Function. Cell Metabolism, 2009, 10, 296-308.	7.2	143
77	Myt1 and Ngn3 form a feed-forward expression loop to promote endocrine islet cell differentiation. Developmental Biology, 2008, 317, 531-540.	0.9	90
78	Facultative Endocrine Progenitor Cells in the Adult Pancreas. Cell, 2008, 132, 183-184.	13.5	57
79	Four-dimensional realistic modeling of pancreatic organogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20374-20379.	3.3	69
80	Pancreatic Lkb1 Deletion Leads to Acinar Polarity Defects and Cystic Neoplasms. Molecular and Cellular Biology, 2008, 28, 2414-2425.	1.1	137
81	Estimating Cell Depth from Somatic Mutations. PLoS Computational Biology, 2008, 4, e1000058.	1.5	35
82	cell transdifferentiation does not contribute to preneoplastic/metaplastic ductal lesions of the pancreas by genetic lineage tracing in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4419-4424.	3.3	50
83	Lineage Tracing Evidence for In Vitro Dedifferentiation but Rare Proliferation of Mouse Pancreatic Â-Cells. Diabetes, 2007, 56, 1299-1304.	0.3	129
84	Regeneration in Liver and Pancreas: Time to Cut the Umbilical Cord?. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pe66.	4.1	12
85	New sources of pancreatic beta cells. Current Diabetes Reports, 2007, 7, 304-308.	1.7	21
86	Recovery from diabetes in mice by β cell regeneration. Journal of Clinical Investigation, 2007, 117, 2553-2561.	3.9	525
87	Pancreatic Cells and Their Progenitors. Methods in Enzymology, 2006, 419, 322-337.	0.4	6
88	β-cell proliferation is the major source of new pancreatic β cells. Nature Clinical Practice Endocrinology and Metabolism, 2006, 2, 242-243.	2.9	35
89	VEGF-Induced Adult Neovascularization: Recruitment, Retention, and Role of Accessory Cells. Cell, 2006, 124, 175-189.	13.5	1,092
90	Dissecting the Cellular Origins of Pancreatic Cancer. Cell Cycle, 2006, 5, 43-46.	1.3	32

#	Article	IF	CITATIONS
91	Pten constrains centroacinar cell expansion and malignant transformation in the pancreas. Cancer Cell, 2005, 8, 185-195.	7.7	263
92	How to make pancreatic β cells — prospects for cell therapy in diabetes. Current Opinion in Biotechnology, 2005, 16, 524-529.	3.3	38
93	Active Src Elevates the Expression of β-Catenin by Enhancement of Cap-Dependent Translation. Molecular and Cellular Biology, 2005, 25, 5031-5039.	1.1	62
94	Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes and Development, 2005, 19, 2199-2211.	2.7	531
95	How Important are Adult Stem Cells for Tissue Maintenance?. Cell Cycle, 2004, 3, 1102-1104.	1.3	41
96	Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature, 2004, 429, 41-46.	13.7	2,079
97	Making vascular networks in the adult: branching morphogenesis without a roadmap. Trends in Cell Biology, 2003, 13, 131-136.	3.6	67
98	Induction of Vascular Networks in Adult Organs: Implications to Proangiogenic Therapy. Annals of the New York Academy of Sciences, 2003, 995, 208-216.	1.8	51
99	Activated pp60c-Src Leads to Elevated Hypoxia-inducible Factor (HIF)-1α Expression under Normoxia. Journal of Biological Chemistry, 2002, 277, 42919-42925.	1.6	106
100	Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nature Medicine, 2002, 8, 702-710.	15.2	680
101	Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO Journal, 2002, 21, 1939-1947.	3.5	355
102	Hypoxia-inducible Factor-2α (HIF-2α) Is Involved in the Apoptotic Response to Hypoglycemia but Not to Hypoxia. Journal of Biological Chemistry, 2001, 276, 39192-39196.	1.6	96
103	Heat-induced cell cycle arrest of Saccharomyces cerevisiae : involvement of the RAD6/UBC2 and WSC2 genes in its reversal. Molecular Microbiology, 1999, 32, 729-739.	1.2	18
104	Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 1998, 394, 485-490.	13.7	2,565
105	Ischemia-Driven Angiogenesis. Trends in Cardiovascular Medicine, 1997, 7, 289-294.	2.3	71
106	Role of the conserved carboxy-terminal alpha-helix of Rad6p in ubiquitination and DNA repair. Molecular Microbiology, 1996, 21, 1197-1206.	1.2	17
107	Elevated brain-derived cell-free DNA among patients with first psychotic episode – a proof-of-concept study. ELife, 0, 11, .	2.8	9