
Pengfei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8356321/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A monoclonal antibody that neutralizes SARS-CoV-2 variants, SARS-CoV, and other sarbecoviruses. Emerging Microbes and Infections, 2022, 11, 147-157.	6.5	25
2	Homologous or heterologous booster of inactivated vaccine reduces SARS-CoV-2 Omicron variant escape from neutralizing antibodies. Emerging Microbes and Infections, 2022, 11, 477-481.	6.5	104
3	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
4	Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages. Cell Host and Microbe, 2022, 30, 1077-1083.e4.	11.0	132
5	Sensitivity to Vaccines, Therapeutic Antibodies, and Viral Entry Inhibitors and Advances To Counter the SARS-CoV-2 Omicron Variant. Clinical Microbiology Reviews, 2022, 35, .	13.6	35
6	Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature, 2021, 589, 270-275.	27.8	389
7	Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature, 2021, 593, 130-135.	27.8	1,904
8	Modular basis for potent SARS-CoV-2 neutralization by a prevalent VH1-2-derived antibody class. Cell Reports, 2021, 35, 108950.	6.4	54
9	An Immuno-Cardiac Model for Macrophage-Mediated Inflammation in COVID-19 Hearts. Circulation Research, 2021, 129, 33-46.	4.5	40
10	Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host and Microbe, 2021, 29, 747-751.e4.	11.0	504
11	Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host and Microbe, 2021, 29, 819-833.e7.	11.0	444
12	Angiotensin converting enzyme 2 is a novel target of the Î ³ -secretase complex. Scientific Reports, 2021, 11, 9803.	3.3	13
13	Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature, 2021, 595, 278-282.	27.8	154
14	Structural basis for accommodation of emerging B.1.351 and B.1.1.7 variants by two potent SARS-CoV-2 neutralizing antibodies. Structure, 2021, 29, 655-663.e4.	3.3	52
15	Emergence and expansion of SARS-CoV-2 B.1.526 after identification in New York. Nature, 2021, 597, 703-708.	27.8	103
16	Antibody screening at reduced <scp>pH</scp> enables preferential selection of potently neutralizing antibodies targeting <scp>SARSâ€CoV</scp> â€2. AICHE Journal, 2021, 67, e17440.	3.6	4
17	Cardiomyocytes recruit monocytes upon SARS-CoV-2 infection by secretingÂCCL2. Stem Cell Reports, 2021, 16, 2274-2288.	4.8	37
18	Paired heavy- and light-chain signatures contribute to potent SARS-CoV-2 neutralization in public antibody responses. Cell Reports, 2021, 37, 109771.	6.4	38

Pengfei Wang

#	Article	IF	CITATIONS
19	An airway organoid-based screen identifies a role for the HIF1α-glycolysis axis in SARS-CoV-2 infection. Cell Reports, 2021, 37, 109920.	6.4	36
20	Neutralizing antibody 5-7 defines a distinct site of vulnerability in SARS-CoV-2 spike N-terminal domain. Cell Reports, 2021, 37, 109928.	6.4	52
21	Structure-Based Design with Tag-Based Purification and In-Process Biotinylation Enable Streamlined Development of SARS-CoV-2 Spike Molecular Probes. Cell Reports, 2020, 33, 108322.	6.4	59
22	Quantifying the contribution of Fc-mediated effector functions to the antiviral activity of anti–HIV-1 IgG1 antibodies in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18002-18009.	7.1	44
23	Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Reveal a pH-Dependent Switch to Mediate Endosomal Positioning of Receptor-Binding Domains. Cell Host and Microbe, 2020, 28, 867-879.e5.	11.0	316
24	Integrative analyses of transcriptomics and metabolomics upon seed germination of foxtail millet in response to salinity. Scientific Reports, 2020, 10, 13660.	3.3	45
25	Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature, 2020, 584, 450-456.	27.8	1,337
26	SARS-CoV-2 neutralizing antibody responses are more robust in patients with severe disease. Emerging Microbes and Infections, 2020, 9, 2091-2093.	6.5	109
27	A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell, 2020, 27, 125-136.e7.	11.1	543
28	CRISPR-based gene knockout screens reveal deubiquitinases involved in HIV-1 latency in two Jurkat cell models. Scientific Reports, 2020, 10, 5350.	3.3	30
29	Genome-wide characterization of Rice Black Streaked Dwarf Virus-responsive genes in rice. SDRP Journal of Food Science & Technology, 2020, 5, 66-82.	0.2	1
30	Structure-Based Design with Tag-Based Purification and In-Process Biotinylation Enable Streamlined Development of SARS-CoV-2 Spike Molecular Probes. SSRN Electronic Journal, 2020, , 3639618.	0.4	3
31	Anti-HIV Passive Immunization in Animal Models. Journal of HIV & Retro Virus, 2018, 04, .	0.0	2
32	Reactivation of HIV-1 from Latency by an Ingenol Derivative from Euphorbia Kansui. Scientific Reports, 2017, 7, 9451.	3.3	40
33	The BET inhibitor OTX015 reactivates latent HIV-1 through P-TEFb. Scientific Reports, 2016, 6, 24100.	3.3	56
34	Cytokine cascade and networks among MSM HIV seroconverters: implications for early immunotherapy. Scientific Reports, 2016, 6, 36234.	3.3	23
35	Specific Reactivation of Latent HIV-1 by dCas9-SunTag-VP64-mediated Guide RNA Targeting the HIV-1 Promoter. Molecular Therapy, 2016, 24, 508-521.	8.2	67
36	Reactivation of latent HIV-1 in latently infected cells by coumarin compounds: Hymecromone and ScoparoneReactivation of Latent HIV-1 in Latently Infected Cells by Coumarin Compounds: Hymecromone and Scoparone. Current HIV Research, 2016, 14, 484-490.	0.5	9

Pengfei Wang

#	Article	IF	CITATIONS
37	The Investigation of Field Plate Design in 500 V High Voltage NLDMOS. Advances in Condensed Matter Physics, 2015, 2015, 1-6.	1.1	6
38	Two cellular microRNAs, miR-196b and miR-1290, contribute to HIV-1 latency. Virology, 2015, 486, 228-238.	2.4	34
39	Design of high reliability RF-LDMOS by suppressing the parasitic bipolar effect using enhanced p-well and double epitaxy. Journal of Semiconductors, 2015, 36, 064013.	3.7	3
40	Designed Transcription Activator-Like Effector Proteins Efficiently Induced the Expression of Latent HIV-1 in Latently Infected Cells. AIDS Research and Human Retroviruses, 2015, 31, 98-106.	1.1	15
41	Dilazep synergistically reactivates latent HIV-1 in latently infected cells. Molecular Biology Reports, 2014, 41, 7697-7704.	2.3	5
42	Direct observation of the work function evolution of graphene-two-dimensional metal contacts. Journal of Materials Chemistry C, 2014, 2, 8042-8046.	5.5	21
43	Zinc finger nuclease: a new approach for excising HIV-1 proviral DNA from infected human T cells. Molecular Biology Reports, 2014, 41, 5819-5827.	2.3	13
44	Oxaliplatin antagonizes HIV-1 latency by activating NF-κB without causing global T cell activation. Biochemical and Biophysical Research Communications, 2014, 450, 202-207.	2.1	2
45	Direct Deposition of Uniform High-κ Dielectrics on Graphene. Scientific Reports, 2014, 4, 6448.	3.3	14
46	As2O3 synergistically reactivate latent HIV-1 by induction of NF-κB. Antiviral Research, 2013, 100, 688-697.	4.1	25
47	Involvement of histone methyltransferase GLP in HIV-1 latency through catalysis of H3K9 dimethylation. Virology, 2013, 440, 182-189.	2.4	51
48	Zinc-finger-nucleases mediate specific and efficient excision of HIV-1 proviral DNA from infected and latently infected human T cells. Nucleic Acids Research, 2013, 41, 7771-7782.	14.5	146
49	Selective Histonedeacetylase Inhibitor M344 Intervenes in HIV-1 Latency through Increasing Histone Acetylation and Activation of NF-kappaB. PLoS ONE, 2012, 7, e48832.	2.5	35
50	Cryo-EM Structures Delineate a pH-Dependent Switch that Mediates Endosomal Positioning of SARS-CoV-2 Spike Receptor-Binding Domains. SSRN Electronic Journal, 0, , .	0.4	6
51	Paired Heavy and Light Chain Signatures Contribute to Potent SARS-CoV-2 Neutralization in Public Antibody Responses. SSRN Electronic Journal, 0, , .	0.4	1