
Ondine Cleaver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8356270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induction of Pancreatic Differentiation by Signals from Blood Vessels. Science, 2001, 294, 564-567.	6.0	977
2	Role of endothelial cells in early pancreas and liver development. Mechanisms of Development, 2003, 120, 59-64.	1.7	484
3	Endothelial signaling during development. Nature Medicine, 2003, 9, 661-668.	15.2	455
4	Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 2018, 21, 425-532.	3.7	429
5	Dependence of Mouse Embryonic Stem Cells on Threonine Catabolism. Science, 2009, 325, 435-439.	6.0	318
6	Epithelial dynamics of pancreatic branching morphogenesis. Development (Cambridge), 2010, 137, 4295-4305.	1.2	192
7	Prospective Isolation of Skeletal Muscle Stem Cells with a Pax7 Reporter. Stem Cells, 2008, 26, 3194-3204.	1.4	152
8	Blood Vessel Tubulogenesis Requires Rasip1 Regulation of GTPase Signaling. Developmental Cell, 2011, 20, 526-539.	3.1	148
9	Neovascularization of theXenopus embryo. Developmental Dynamics, 1997, 210, 66-77.	0.8	129
10	Autophagy is essential for cardiac morphogenesis during vertebrate development. Autophagy, 2014, 10, 572-587.	4.3	117
11	Prospective isolation and global gene expression analysis of definitive and visceral endoderm. Developmental Biology, 2007, 304, 541-555.	0.9	114
12	Biphasic Ngn3 expression in the developing pancreas. Developmental Dynamics, 2008, 237, 3270-3279.	0.8	114
13	Lymphoangiocrine signals promote cardiac growth and repair. Nature, 2020, 588, 705-711.	13.7	103
14	Notochord Patterning of the Endoderm. Developmental Biology, 2001, 234, 1-12.	0.9	101
15	Stepwise arteriovenous fate acquisition during mammalian vasculogenesis. Developmental Dynamics, 2011, 240, 2153-2165.	0.8	101
16	BMP and BMP receptor expression during murine organogenesis. Gene Expression Patterns, 2009, 9, 255-265.	0.3	95
17	Blood vessels restrain pancreas branching, differentiation and growth. Development (Cambridge), 2011, 138, 4743-4752.	1.2	87
18	Vascular instruction of pancreas development. Development (Cambridge), 2012, 139, 2833-2843.	1.2	87

#	Article	IF	CITATIONS
19	Bone Morphogenetic Protein 2 Signaling Negatively Modulates Lymphatic Development in Vertebrate Embryos. Circulation Research, 2014, 114, 56-66.	2.0	86
20	Endothelial-Specific Expression of WNK1 Kinase Is Essential for Angiogenesis and Heart Development in Mice. American Journal of Pathology, 2009, 175, 1315-1327.	1.9	83
21	Cdc42 is required for cytoskeletal support of endothelial cell adhesion during blood vessel formation. Development (Cambridge), 2015, 142, 3058-70.	1.2	83
22	Molecular determinants of nephron vascular specialization in the kidney. Nature Communications, 2019, 10, 5705.	5.8	83
23	Tubulogenesis during blood vessel formation. Seminars in Cell and Developmental Biology, 2011, 22, 993-1004.	2.3	82
24	HoxA3 is an apical regulator of haemogenic endothelium. Nature Cell Biology, 2011, 13, 72-78.	4.6	72
25	Endosomal sorting of Notch receptors through COMMD9-dependent pathways modulates Notch signaling. Journal of Cell Biology, 2015, 211, 605-617.	2.3	62
26	Wnt4 is essential to normal mammalian lung development. Developmental Biology, 2015, 406, 222-234.	0.9	58
27	(Re)Building a Kidney. Journal of the American Society of Nephrology: JASN, 2017, 28, 1370-1378.	3.0	58
28	Xbap,a Vertebrate Gene Related tobagpipe, Is Expressed in Developing Craniofacial Structures and in Anterior Gut Muscle. Developmental Biology, 1997, 181, 223-233.	0.9	57
29	Integration of Repulsive Guidance Cues Generates Avascular Zones That Shape Mammalian Blood Vessels. Circulation Research, 2012, 110, 34-46.	2.0	57
30	Rasip1 is required for endothelial cell motility, angiogenesis and vessel formation. Developmental Biology, 2009, 329, 269-279.	0.9	55
31	Spatiotemporal heterogeneity and patterning of developing renal blood vessels. Angiogenesis, 2018, 21, 617-634.	3.7	55
32	Rasip1-Mediated Rho GTPase Signaling Regulates Blood Vessel Tubulogenesis via Nonmuscle Myosin II. Circulation Research, 2016, 119, 810-826.	2.0	51
33	Cdc42 and k-Ras Control Endothelial Tubulogenesis through Apical Membrane and Cytoskeletal Polarization: Novel Stimulatory Roles for GTPase Effectors, the Small GTPases, Rac2 and Rap1b, and Inhibitory Influence of Arhgap31 and Rasa1. PLoS ONE, 2016, 11, e0147758.	1.1	51
34	Ligand-induced EpoR internalization is mediated by JAK2 and p85 and is impaired by mutations responsible for primary familial and congenital polycythemia. Blood, 2009, 113, 5287-5297.	0.6	49
35	Rgs16 and Rgs8 in embryonic endocrine pancreas and mouse models of diabetes. DMM Disease Models and Mechanisms, 2010, 3, 567-580.	1.2	48
36	Compartmentalized metabolism supports midgestation mammalian development. Nature, 2022, 604, 349-353.	13.7	47

#	Article	IF	CITATIONS
37	Alk2/ACVR1 and Alk3/BMPR1A Provide Essential Function for Bone Morphogenetic Protein–Induced Retinal Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 657-663.	1.1	34
38	Crosstalk between the developing pancreas and its blood vessels: An evolving dialog. Seminars in Cell and Developmental Biology, 2012, 23, 685-692.	2.3	33
39	Tcf19 is a novel islet factor necessary for proliferation and survival in the INS-1 β-cell line. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E600-E610.	1.8	33
40	Rasip1 is essential to blood vessel stability and angiogenic blood vessel growth. Angiogenesis, 2016, 19, 173-190.	3.7	30
41	Building Blood Vessels—One Rho GTPase at a Time. Cells, 2019, 8, 545.	1.8	30
42	Resolution of defective dorsal aortae patterning in Sema3Eâ€deficient mice occurs via angiogenic remodeling. Developmental Dynamics, 2013, 242, 580-590.	0.8	27
43	Pdx1 regulates pancreas tubulogenesis and E-cadherin expression. Development (Cambridge), 2015, 143, 101-12.	1.2	27
44	EphB3 marks delaminating endocrine progenitor cells in the developing pancreas. Developmental Dynamics, 2012, 241, 1008-1019.	0.8	26
45	Role of CD34 family members in lumen formation in the developing kidney. Developmental Biology, 2016, 418, 66-74.	0.9	23
46	Vascularizing organogenesis: Lessons from developmental biology and implications for regenerative medicine. Current Topics in Developmental Biology, 2019, 132, 177-220.	1.0	23
47	Vascular deficiencies in renal organoids and ex vivo kidney organogenesis. Developmental Biology, 2021, 477, 98-116.	0.9	23
48	Annexin A3 Regulates Early Blood Vessel Formation. PLoS ONE, 2015, 10, e0132580.	1.1	22
49	Vascular development in the vertebrate pancreas. Developmental Biology, 2016, 420, 67-78.	0.9	21
50	Afadin and RhoA control pancreatic endocrine mass via lumen morphogenesis. Genes and Development, 2017, 31, 2376-2390.	2.7	21
51	LATS1/2 suppress NFκB and aberrant EMT initiation to permit pancreatic progenitor differentiation. PLoS Biology, 2019, 17, e3000382.	2.6	21
52	CDC42 is required for epicardial and pro-epicardial development by mediating FGF receptor trafficking to the plasma membrane. Development (Cambridge), 2017, 144, 1635-1647.	1.2	20
53	Blood vessel crosstalk during organogenesis—focus on pancreas and endothelial cells. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 598-617.	5.9	19
54	1 Homeobox Genes in Cardiovascular Development. Current Topics in Developmental Biology, 1998, 40, 1-44.	1.0	18

#	Article	IF	CITATIONS
55	Rasip1 controls lymphatic vessel lumen maintenance by regulating endothelial cell junctions. Development (Cambridge), 2018, 145, .	1.2	17
56	Src- and Fyn-dependent apical membrane trafficking events control endothelial lumen formation during vascular tube morphogenesis. PLoS ONE, 2017, 12, e0184461.	1.1	15
57	Outside In: Inversion of Cell Polarity Controls Epithelial Lumen Formation. Developmental Cell, 2014, 31, 140-142.	3.1	13
58	Blood Vessel Signals During Development and Beyond. Current Topics in Developmental Biology, 2004, 62, 1-36.	1.0	10
59	Progenitor Epithelium. Journal of Histochemistry and Cytochemistry, 2015, 63, 559-574.	1.3	10
60	Vascular patterning: coordinated signals keep blood vessels on track. Current Opinion in Genetics and Development, 2015, 32, 86-91.	1.5	10
61	Cyp26b1 is a critical regulator of distal airway epithelial differentiation during lung development. Development (Cambridge), 2020, 147, .	1.2	10
62	Annexin A3 is necessary for parallel arteryâ€vein alignment in the mouse retina. Developmental Dynamics, 2020, 249, 666-678.	0.8	9
63	Mouse models of vascular development and disease. Current Opinion in Hematology, 2021, 28, 179-188.	1.2	9
64	Vascular Development. , 2010, , 487-528.		8
65	Developmental Molecular Biology of the Pancreas. , 2010, , 71-117.		7
66	β Cell Renewal versus Differentiation: Slow and Steady Wins the Race. Developmental Cell, 2017, 41, 223-225.	3.1	6
67	Plumbing our organs: Lessons from vascular development to instruct lab generated tissues. Current Topics in Developmental Biology, 2022, 148, 165-194.	1.0	5
68	Specifying the Pancreatic Islet through Biomechanical Forces. New England Journal of Medicine, 2019, 380, 1281-1283.	13.9	4
69	Recalibrating vascular malformations and mechanotransduction by pharmacological intervention. Journal of Clinical Investigation, 2022, 132, .	3.9	4
70	Developmental Molecular Biology of the Pancreas. , 2018, , 89-145.		3
71	The cell cortex as mediator of pancreatic epithelial development and endocrine differentiation. Current Opinion in Genetics and Development, 2022, 72, 118-127.	1.5	3
72	Cdc42 is required for cytoskeletal support of endothelial cell adhesion during blood vessel formation in mice. Journal of Cell Science, 2015, 128, e1.2-e1.2.	1.2	2

#	Article	IF	CITATIONS
73	Endothelial Cyp26b1 restrains murine heart valve growth during development. Developmental Biology, 2022, 486, 81-95.	0.9	2
74	Developmental Molecular Biology of the Pancreas. , 2016, , 1-57.		1
75	Part B: Directed Differentiation of Human Embryonic Stem Cells into Endothelial Cells. , 0, , 229-248.		0
76	The developing endothelium in action. Seminars in Cell and Developmental Biology, 2011, 22, 975.	2.3	0
77	The Elusive Pancreatic Stem Cell. Pancreatic Islet Biology, 2015, , 99-133.	0.1	0
78	Cover Image, Volume 5, Issue 5. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, i-i.	5.9	0
79	Rgs16 is a pancreatic reporter of chronic hyperglycemia in diabetes. FASEB Journal, 2012, 26, 759.6.	0.2	0
80	Angiodiversity—A tale retold by comparative transcriptomics. , 2022, , 199-218.		0