Luca Stabile

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8355967/publications.pdf

Version: 2024-02-01

97 papers	5,225 citations	70961 41 h-index	91712 69 g-index
102	102	102	5139
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environment International, 2020, 141, 105794.	4.8	545
2	Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications. Environment International, 2020, 145, 106112.	4.8	306
3	Particle emission factors during cooking activities. Atmospheric Environment, 2009, 43, 3235-3242.	1.9	304
4	Influential parameters on particle concentration and size distribution in the mainstream of e-cigarettes. Environmental Pollution, 2014, 184, 523-529.	3.7	216
5	Personal exposure to ultrafine particles: The influence of time-activity patterns. Science of the Total Environment, 2014, 468-469, 903-907.	3.9	136
6	Tracing surface and airborne SARS-CoV-2 RNA inside public buses and subway trains. Environment International, 2021, 147, 106326.	4.8	119
7	The effect of natural ventilation strategy on indoor air quality in schools. Science of the Total Environment, 2017, 595, 894-902.	3.9	118
8	Children exposure assessment to ultrafine particles and black carbon: The role of transport and cooking activities. Atmospheric Environment, 2013, 79, 53-58.	1.9	116
9	Aerosol deposition doses in the human respiratory tree of electronic cigarette smokers. Environmental Pollution, 2015, 196, 257-267.	3.7	116
10	Airborne particle emission of a commercial 3D printer: the effect of filament material and printing temperature. Indoor Air, 2017, 27, 398-408.	2.0	109
11	Short-term effects of electronic and tobacco cigarettes on exhaled nitric oxide. Toxicology and Applied Pharmacology, 2014, 278, 9-15.	1.3	108
12	Influential parameters on particle exposure of pedestrians in urban microenvironments. Atmospheric Environment, 2011, 45, 1434-1443.	1.9	107
13	Tracheobronchial and alveolar dose of submicrometer particles for different population age groups in Italy. Atmospheric Environment, 2011, 45, 6216-6224.	1.9	106
14	Effects of air pollution on health: A mapping review of systematic reviews and meta-analyses. Environmental Research, 2021, 201, 111487.	3.7	104
15	Silver nanoparticles inhaled during pregnancy reach and affect the placenta and the foetus. Nanotoxicology, $2017, 11, 687-698$.	1.6	102
16	Volatility Characterization of Cooking-Generated Aerosol Particles. Aerosol Science and Technology, 2011, 45, 1069-1077.	1.5	85
17	Characteristics of particles and black carbon emitted by combustion of incenses, candles and anti-mosquito products. Building and Environment, 2012, 56, 184-191.	3.0	85
18	Effect of natural ventilation and manual airing on indoor air quality in naturally ventilated Italian classrooms. Building and Environment, 2016, 98, 180-189.	3.0	85

#	Article	IF	CITATIONS
19	Exposure to particle number, surface area and PM concentrations in pizzerias. Atmospheric Environment, 2010, 44, 3963-3969.	1.9	83
20	Airborne particle concentrations at schools measured at different spatial scales. Atmospheric Environment, 2013, 67, 38-45.	1.9	82
21	A comparison of submicrometer particle dose between Australian and Italian people. Environmental Pollution, 2012, 169, 183-189.	3.7	75
22	Lung cancer risk of airborne particles for Italian population. Environmental Research, 2015, 142, 443-451.	3.7	72
23	Ventilation procedures to minimize the airborne transmission of viruses in classrooms. Building and Environment, 2021, 202, 108042.	3.0	72
24	Close proximity risk assessment for SARS-CoV-2 infection. Science of the Total Environment, 2021, 794, 148749.	3.9	72
25	Temporal size distribution and concentration of particles near a major highway. Atmospheric Environment, 2009, 43, 1100-1105.	1.9	71
26	Chemical, dimensional and morphological ultrafine particle characterization from a waste-to-energy plant. Waste Management, 2011, 31, 2253-2262.	3.7	65
27	Effect of ventilation strategies and air purifiers on the children's exposure to airborne particles and gaseous pollutants in school gyms. Science of the Total Environment, 2020, 712, 135673.	3.9	61
28	Exposure to welding particles in automotive plants. Journal of Aerosol Science, 2011, 42, 295-304.	1.8	60
29	Size distribution and number concentration of particles at the stack of a municipal waste incinerator. Waste Management, 2009, 29, 749-755.	3.7	59
30	Uncertainty Budget of the SMPS–APS System in the Measurement of PM ₁ , PM _{2.5} , and PM ₁₀ . Aerosol Science and Technology, 2009, 43, 1130-1141.	1.5	58
31	The effect of the ventilation retrofit in a school on CO2, airborne particles, and energy consumptions. Building and Environment, 2019, 156, 1-11.	3.0	57
32	Lung cancer risk assessment due to traffic-generated particles exposure in urban street canyons: A numerical modelling approach. Science of the Total Environment, 2018, 631-632, 1109-1116.	3.9	54
33	Second-hand aerosol from tobacco and electronic cigarettes: Evaluation of the smoker emission rates and doses and lung cancer risk of passive smokers and vapers. Science of the Total Environment, 2018, 642, 137-147.	3.9	54
34	Particle doses in the pulmonary lobes of electronic and conventional cigarette users. Environmental Pollution, 2015, 202, 24-31.	3.7	49
35	Particle Resuspension in School Gyms during Physical Activities. Aerosol and Air Quality Research, 2012, 12, 803-813.	0.9	49
36	Characterization of particle emission from laser printers. Science of the Total Environment, 2017, 586, 623-630.	3.9	48

#	Article	IF	Citations
37	Particle-related exposure, dose and lung cancer risk of primary school children in two European countries. Science of the Total Environment, 2018, 616-617, 720-729.	3.9	47
38	Indoor Air Quality in Naturally Ventilated Italian Classrooms. Atmosphere, 2015, 6, 1652-1675.	1.0	46
39	In vitro lung toxicity of indoor PM10 from a stove fueled with different biomasses. Science of the Total Environment, 2019, 649, 1422-1433.	3.9	45
40	Ultrafine Particle Generation through Atomization Technique: The Influence of the Solution. Aerosol and Air Quality Research, 2013, 13, 1667-1677.	0.9	44
41	Effects of the exposure to indoor cooking-generated particles on nitric oxide exhaled by women. Atmospheric Environment, 2015, 103, 238-246.	1.9	43
42	Influence of measurement frequency on the evaluation of short-term dose of sub-micrometric particles during indoor and outdoor generation events. Atmospheric Environment, 2013, 67, 130-142.	1.9	40
43	Critical aspects of the uncertainty budget in the gravimetric PM measurements. Measurement: Journal of the International Measurement Confederation, 2011, 44, 139-147.	2.5	38
44	Dimensional and chemical characterization of particles at a downwind receptor site of a waste-to-energy plant. Waste Management, 2010, 30, 1325-1333.	3.7	37
45	Indoor exposure to particles emitted by biomass-burning heating systems and evaluation of dose and lung cancer risk received by population. Environmental Pollution, 2018, 235, 65-73.	3.7	37
46	Measurements of electronic cigarette-generated particles for the evaluation of lung cancer risk of active and passive users. Journal of Aerosol Science, 2018, 115, 1-11.	1.8	37
47	The Effect of Ventilation Strategies on Indoor Air Quality and Energy Consumptions in Classrooms. Buildings, 2019, 9, 110.	1.4	36
48	Numerical Simulation of Ultrafine Particle Dispersion in Urban Street Canyons with the Spalart-Allmaras Turbulence Model. Aerosol and Air Quality Research, 2013, 13, 1423-1437.	0.9	36
49	Smokers' lung cancer risk related to the cigarette-generated mainstream particles. Journal of Aerosol Science, 2017, 107, 41-54.	1.8	33
50	The airborne contagiousness of respiratory viruses: A comparative analysis and implications for mitigation. Geoscience Frontiers, 2022, 13, 101285.	4.3	32
51	A simplified benchmark of ultrafine particle dispersion in idealized urban street canyons: A wind tunnel study. Building and Environment, 2015, 93, 186-198.	3.0	28
52	Ultrafine particle emission from incinerators: The role of the fabric filter. Journal of the Air and Waste Management Association, 2012, 62, 103-111.	0.9	27
53	A benchmark for numerical scheme validation of airborne particle exposure in street canyons. Environmental Science and Pollution Research, 2015, 22, 2051-2063.	2.7	27
54	Characterization of airborne particles emitted by an electrically heated tobacco smoking system. Environmental Pollution, 2018, 240, 248-254.	3.7	27

#	Article	IF	Citations
55	Metrological Performances of a Diffusion Charger Particle Counter for Personal Monitoring. Aerosol and Air Quality Research, 2014, 14, 156-167.	0.9	26
56	Variability of airborne particle metrics in an urban area. Environmental Pollution, 2017, 220, 625-635.	3.7	25
57	Effects of the exposure to ultrafine particles on heart rate in a healthy population. Science of the Total Environment, 2019, 650, 2403-2410.	3.9	25
58	Dimensional and Chemical Characterization of Airborne Particles in Schools: Respiratory Effects in Children. Aerosol and Air Quality Research, 2013, 13, 887-900.	0.9	25
59	Lung cancer risk assessment at receptor site of a waste-to-energy plant. Waste Management, 2016, 56, 207-215.	3.7	24
60	Increased close proximity airborne transmission of the SARS-CoV-2 Delta variant. Science of the Total Environment, 2022, 816, 151499.	3.9	24
61	The influence of lifestyle on airborne particle surface area doses received by different Western populations. Environmental Pollution, 2018, 232, 113-122.	3.7	23
62	Link between SARS-CoV-2 emissions and airborne concentrations: Closing the gap in understanding. Journal of Hazardous Materials, 2022, 428, 128279.	6.5	23
63	Occupational exposure to airborne particles and other pollutants in an aviation base. Environmental Pollution, 2012, 170, 78-87.	3.7	22
64	Airborne particle emission rates and doses received in operating rooms from surgical smoke. Building and Environment, 2019, 151, 168-174.	3.0	22
65	A novel approach to evaluate the lung cancer risk of airborne particles emitted in a city. Science of the Total Environment, 2019, 656, 1032-1042.	3.9	20
66	Risk of SARSâ€CoVâ€2 in a car cabin assessed through 3D CFD simulations. Indoor Air, 2022, 32, e13012.	2.0	20
67	Charged particles and cluster ions produced during cooking activities. Science of the Total Environment, 2014, 497-498, 516-526.	3.9	19
68	Do air quality targets really represent safe limits for lung cancer risk?. Science of the Total Environment, 2017, 580, 74-82.	3.9	19
69	Metrological Assessment of a Portable Analyzer for Monitoring the Particle Size Distribution of Ultrafine Particles. Annals of Occupational Hygiene, 2014, 58, 860-76.	1.9	17
70	Effect of indoor-generated airborne particles on radon progeny dynamics. Journal of Hazardous Materials, 2016, 314, 155-163.	6.5	15
71	Experimental evaluation of the in-the-field capabilities of total-reflection X-ray fluorescence analysis to trace fine and ultrafine aerosol particles in populated areas. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 167, 105852.	1.5	15
72	Ultrafine particle emission from floor cleaning products. Indoor Air, 2021, 31, 63-73.	2.0	14

#	Article	IF	Citations
73	Tracheobronchial and Alveolar Particle Surface Area Doses in Smokers. Atmosphere, 2017, 8, 19.	1.0	12
74	Assessment of SARS-CoV-2 airborne infection transmission risk in public buses. Geoscience Frontiers, 2022, 13, 101398.	4.3	12
75	Daily submicron particle doses received by populations living in different low- and middle-income countries. Environmental Pollution, 2021, 269, 116229.	3.7	11
76	Particle and Carbon Dioxide Concentration Levels in a Surgical Room Conditioned with a Window/Wall Air-Conditioning System. International Journal of Environmental Research and Public Health, 2020, 17, 1180.	1.2	10
77	The vaccination threshold for SARS-CoV-2 depends on the indoor setting and room ventilation. BMC Infectious Diseases, 2021, 21, 1193.	1.3	10
78	Air Permeability of Naturally Ventilated Italian Classrooms. Energy Procedia, 2015, 78, 3150-3155.	1.8	9
79	Electronic cigarettes: age-specific generation-resolved pulmonary doses. Environmental Science and Pollution Research, 2017, 24, 13068-13079.	2.7	8
80	A General Approach for Retrofit of Existing Buildings Towards NZEB: The Windows Retrofit Effects on Indoor Air Quality and the Use of Low Temperature District Heating. , 2018, , .		8
81	Particle Emissions from Laser Printers: Have They Decreased?. Environmental Science and Technology Letters, 2019, 6, 300-305.	3.9	8
82	Exposure to Submicron Particles and Estimation of the Dose Received by Children in School and Non-School Environments. Atmosphere, 2020, 11, 485.	1.0	8
83	Natural ventilation measurements in a multi-room dwelling: Critical aspects and comparability of pressurization and tracer gas decay tests. Journal of Building Engineering, 2021, 42, 102478.	1.6	8
84	INDIVIDUAL EXPOSURE OF WOMEN TO FINE AND COARSE PARTICULATE MATTER. Environmental Engineering and Management Journal, 2015, 14, 827-836.	0.2	8
85	Sub-micron particle number emission from residential heating systems: A comparison between conventional and condensing boilers fueled by natural gas and liquid petroleum gas, and pellet stoves. Science of the Total Environment, 2022, 827, 154288.	3.9	8
86	Quantification of Element Mass Concentrations in Ambient Aerosols by Combination of Cascade Impactor Sampling and Mobile Total Reflection X-ray Fluorescence Spectroscopy. Atmosphere, 2021, 12, 309.	1.0	7
87	Occupational Exposure to Fine Particles and Ultrafine Particles in a Steelmaking Foundry. Metals, 2019, 9, 163.	1.0	6
88	A simplified approach to evaluate the lung cancer risk related to airborne particles emitted by indoor sources. Building and Environment, 2021, 204, 108143.	3.0	6
89	Generation of ultrafine particles by high-velocity impact of metal projectiles on a metallic target. Journal of Aerosol Science, 2013, 55, 66-77.	1.8	5
90	Effects of the flue gas treatment of incinerator plants on sub-micron particle concentrations at the stack. Waste Management, 2020, 101, 9-17.	3.7	4

#	Article	IF	CITATIONS
91	Influence of methodology on the estimation of the particle surface area dose received by a population in all-day activities. Environmental Pollution, 2020, 266, 115209.	3.7	4
92	Statistics of a Sharp GP2Y Low-Cost Aerosol PM Sensor Output Signals. Sensors, 2020, 20, 6707.	2.1	2
93	Ultrafine particle generation by high-velocity impact of metal projectiles. Journal of Physics: Conference Series, 2014, 500, 182018.	0.3	1
94	Formation of cluster mode particles (1–3Ânm) in preschools. Science of the Total Environment, 2021, , 151756.	3.9	1
95	A Eulerian-Lagrangian approach for the CFD analysis of airborne disease transmission in a car cabin. Journal of Physics: Conference Series, 2022, 2177, 012015.	0.3	1
96	Ultrafine particle size distribution during high velocity impact of high density metals., 2012,,.		0
97	Physiological Responses to Acute Airborne Particle Exposure during Maximal Aerobic Power. Aerosol and Air Quality Research, 2016, 16, 1922-1930.	0.9	0