Decio L Eizirik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8355743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of Proinflammatory Cytokines on Alternative Splicing Patterns in Human Islets. Diabetes, 2022, 71, 116-127.	0.6	4
2	Neuropeptide Y1 receptor antagonism protects β-cells and improves glycemic control in type 2 diabetes. Molecular Metabolism, 2022, 55, 101413.	6.5	10
3	The Role of Beta Cell Recovery in Type 2 Diabetes Remission. International Journal of Molecular Sciences, 2022, 23, 7435.	4.1	17
4	Kdm2a deficiency in macrophages enhances thermogenesis to protect mice against HFD-induced obesity by enhancing H3K36me2 at the Pparg locus. Cell Death and Differentiation, 2021, 28, 1880-1899.	11.2	33
5	Gene expression signatures of target tissues in type 1 diabetes, lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. Science Advances, 2021, 7, .	10.3	42
6	Pro-Inflammatory Cytokines Induce Insulin and Glucagon Double Positive Human Islet Cells That Are Resistant to Apoptosis. Biomolecules, 2021, 11, 320.	4.0	9
7	Endogenous mitochondrial doubleâ€stranded RNA is not an activator of the type I interferon response in human pancreatic beta cells. Autoimmunity Highlights, 2021, 12, 6.	3.9	5
8	DNAJC3 deficiency induces β-cell mitochondrial apoptosis and causes syndromic young-onset diabetes. European Journal of Endocrinology, 2021, 184, 455-468.	3.7	29
9	A functional genomic approach to identify reference genes for human pancreatic beta cell real-time quantitative RT-PCR analysis. Islets, 2021, 13, 51-65.	1.8	5
10	The Pancreatic ß-cell Response to Secretory Demands and Adaption to Stress. Endocrinology, 2021, 162,	2.8	18
11	From Pancreatic Î ² -Cell Gene Networks to Novel Therapies for Type 1 Diabetes. Diabetes, 2021, 70, 1915-1925.	0.6	14
12	CD8+ T cells variably recognize native versus citrullinated GRP78 epitopes in type 1 diabetes. Diabetes, 2021, 70, db210259.	0.6	11
13	The RNA-binding profile of the splicing factor SRSF6 in immortalized human pancreatic β-cells. Life Science Alliance, 2021, 4, e202000825.	2.8	14
14	TIGER: The gene expression regulatory variation landscape of human pancreatic islets. Cell Reports, 2021, 37, 109807.	6.4	45
15	A Humanized Mouse Strain That Develops Spontaneously Immune-Mediated Diabetes. Frontiers in Immunology, 2021, 12, 748679.	4.8	5
16	Comprehensive Proteomics Analysis of Stressed Human Islets Identifies GDF15 as a Target for Type 1 Diabetes Intervention. Cell Metabolism, 2020, 31, 363-374.e6.	16.2	78
17	Pro-inflammatory cytokines induce cell death, inflammatory responses, and endoplasmic reticulum stress in human iPSC-derived beta cells. Stem Cell Research and Therapy, 2020, 11, 7.	5.5	60
18	A nanobody-based nuclear imaging tracer targeting dipeptidyl peptidase 6 to determine the mass of human beta cell grafts in mice. Diabetologia, 2020, 63, 825-836.	6.3	20

#	Article	lF	CITATIONS
19	Beta Cell Imaging—From Pre-Clinical Validation to First in Man Testing. International Journal of Molecular Sciences, 2020, 21, 7274.	4.1	7
20	Persistent or Transient Human Î ² Cell Dysfunction Induced by Metabolic Stress: Specific Signatures and Shared Gene Expression with Type 2 Diabetes. Cell Reports, 2020, 33, 108466.	6.4	65
21	SARS-CoV-2 Receptor Angiotensin I-Converting Enzyme Type 2 (ACE2) Is Expressed in Human Pancreatic β-Cells and in the Human Pancreas Microvasculature. Frontiers in Endocrinology, 2020, 11, 596898.	3.5	144
22	Combined transcriptome and proteome profiling of the pancreatic β-cell response to palmitate unveils key pathways of β-cell lipotoxicity. BMC Genomics, 2020, 21, 590.	2.8	35
23	Revisiting the role of inflammation in the loss of pancreatic Î ² -cells in T1DM. Nature Reviews Endocrinology, 2020, 16, 611-612.	9.6	20
24	Peptides Derived From Insulin Granule Proteins Are Targeted by CD8+ T Cells Across MHC Class I Restrictions in Humans and NOD Mice. Diabetes, 2020, 69, 2678-2690.	0.6	34
25	Molecular Footprints of the Immune Assault on Pancreatic Beta Cells in Type 1 Diabetes. Frontiers in Endocrinology, 2020, 11, 568446.	3.5	19
26	Presumption of innocence for beta cells: why are they vulnerable autoimmune targets in type 1 diabetes?. Diabetologia, 2020, 63, 1999-2006.	6.3	72
27	SUMOylation of Pdia3 exacerbates proinsulin misfolding and ER stress in pancreatic beta cells. Journal of Molecular Medicine, 2020, 98, 1795-1807.	3.9	6
28	Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nature Reviews Endocrinology, 2020, 16, 349-362.	9.6	426
29	Preclinical evaluation of tyrosine kinase 2 inhibitors for human betaâ€ɛell protection in type 1 diabetes. Diabetes, Obesity and Metabolism, 2020, 22, 1827-1836.	4.4	25
30	SUMOylation, a multifaceted regulatory mechanism in the pancreatic beta cells. Seminars in Cell and Developmental Biology, 2020, 103, 51-58.	5.0	13
31	The T1D-associated lncRNA <i>Lnc13</i> modulates human pancreatic β cell inflammation by allele-specific stabilization of <i>STAT1</i> mRNA. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9022-9031.	7.1	43
32	An integrated multi-omics approach identifies the landscape of interferon-α-mediated responses of human pancreatic beta cells. Nature Communications, 2020, 11, 2584.	12.8	87
33	Integration of single-cell datasets reveals novel transcriptomic signatures of β-cells in human type 2 diabetes. NAR Genomics and Bioinformatics, 2020, 2, Iqaa097.	3.2	15
34	YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress. Journal of Clinical Investigation, 2020, 130, 6338-6353.	8.2	58
35	The pancreatic beta cells: Still much to be learned. Seminars in Cell and Developmental Biology, 2020, 103, 1-2.	5.0	1
36	Fostering improved human islet research: a European perspective. Diabetologia, 2019, 62, 1514-1516.	6.3	13

#	Article	IF	CITATIONS
37	The impact of proinflammatory cytokines on the β-cell regulatory landscape provides insights into the genetics of type 1 diabetes. Nature Genetics, 2019, 51, 1588-1595.	21.4	117
38	Modulation of Autophagy Influences the Function and Survival of Human Pancreatic Beta Cells Under Endoplasmic Reticulum Stress Conditions and in Type 2 Diabetes. Frontiers in Endocrinology, 2019, 10, 52.	3.5	67
39	The role of proteomics in assessing beta-cell dysfunction and death in type 1 diabetes. Expert Review of Proteomics, 2019, 16, 569-582.	3.0	8
40	Cytokine-induced translocation of GRP78 to the plasma membrane triggers a pro-apoptotic feedback loop in pancreatic beta cells. Cell Death and Disease, 2019, 10, 309.	6.3	53
41	Coxsackievirus B Tailors the Unfolded Protein Response to Favour Viral Amplification in Pancreatic β Cells. Journal of Innate Immunity, 2019, 11, 375-390.	3.8	23
42	DEXI, a candidate gene for type 1 diabetes, modulates rat and human pancreatic beta cell inflammation via regulation of the type I IFN/STAT signalling pathway. Diabetologia, 2019, 62, 459-472.	6.3	32
43	MCPIP1 regulates the sensitivity of pancreatic beta-cells to cytokine toxicity. Cell Death and Disease, 2019, 10, 29.	6.3	12
44	Prolactin protects against cytokine-induced beta-cell death by NFκB and JNK inhibition. Journal of Molecular Endocrinology, 2018, 61, 25-36.	2.5	14
45	Distinct gene expression pathways in islets from individuals with short―and longâ€duration type 1 diabetes. Diabetes, Obesity and Metabolism, 2018, 20, 1859-1867.	4.4	31
46	SRp55 Regulates a Splicing Network That Controls Human Pancreatic β-Cell Function and Survival. Diabetes, 2018, 67, 423-436.	0.6	46
47	IFN-α induces a preferential long-lasting expression of MHC class I in human pancreatic beta cells. Diabetologia, 2018, 61, 636-640.	6.3	50
48	Coxsackievirus and Type 1 Diabetes Mellitus: The Wolf's Footprints. Trends in Endocrinology and Metabolism, 2018, 29, 137-139.	7.1	15
49	Both conditional ablation and overexpression of E2 SUMO-conjugating enzyme (UBC9) in mouse pancreatic beta cells result in impaired beta cell function. Diabetologia, 2018, 61, 881-895.	6.3	57
50	Molecular genetics of the transcription factor GLIS3 identifies its dual function in beta cells and neurons. Genomics, 2018, 110, 98-111.	2.9	22
51	Exercise training protects human and rodent \hat{l}^2 cells against endoplasmic reticulum stress and apoptosis. FASEB Journal, 2018, 32, 1524-1536.	0.5	33
52	Detection and quantification of beta cells by PET imaging: why clinical implementation has never been closer. Diabetologia, 2018, 61, 2516-2519.	6.3	13
53	When one becomes many—Alternative splicing in βâ€cell function and failure. Diabetes, Obesity and Metabolism, 2018, 20, 77-87.	4.4	32
54	PDL1 is expressed in the islets of people with type 1 diabetes and is up-regulated by interferons-α and-γ via IRF1 induction. EBioMedicine, 2018, 36, 367-375.	6.1	138

#	Article	IF	CITATIONS
55	Can GABA turn pancreatic Î \pm -cells into Î 2 -cells?. Nature Reviews Endocrinology, 2018, 14, 629-630.	9.6	10
56	Imaging of Human Insulin Secreting Cells with Gd-DOTA-P88, a Paramagnetic Contrast Agent Targeting the Beta Cell Biomarker FXYD2l ³ a. Molecules, 2018, 23, 2100.	3.8	9
57	Conventional and Neo-antigenic Peptides Presented by β Cells Are Targeted by Circulating NaÃ⁻ve CD8+ T Cells in Type 1 Diabetic and Healthy Donors. Cell Metabolism, 2018, 28, 946-960.e6.	16.2	177
58	Unexpected subcellular distribution of a specific isoform of the Coxsackie and adenovirus receptor, CAR-SIV, in human pancreatic beta cells. Diabetologia, 2018, 61, 2344-2355.	6.3	60
59	CXCL14, a Brown Adipokine that Mediates Brown-Fat-to-Macrophage Communication in Thermogenic Adaptation. Cell Metabolism, 2018, 28, 750-763.e6.	16.2	164
60	Biomarkers of islet beta cell stress and death in type 1 diabetes. Diabetologia, 2018, 61, 2259-2265.	6.3	31
61	Interferon-α mediates human beta cell HLA class I overexpression, endoplasmic reticulum stress and apoptosis, three hallmarks of early human type 1 diabetes. Diabetologia, 2017, 60, 656-667.	6.3	135
62	dUTPase (<i>DUT</i>) Is Mutated in a Novel Monogenic Syndrome With Diabetes and Bone Marrow Failure. Diabetes, 2017, 66, 1086-1096.	0.6	22
63	Neuron-enriched RNA-binding Proteins Regulate Pancreatic Beta Cell Function and Survival. Journal of Biological Chemistry, 2017, 292, 3466-3480.	3.4	56
64	High-throughput screening and bioinformatic analysis to ascertain compounds that prevent saturated fatty acid-induced β-cell apoptosis. Biochemical Pharmacology, 2017, 138, 140-149.	4.4	22
65	Checks and Balances—The Limits of β-Cell Endurance to ER Stress. Diabetes, 2017, 66, 1467-1469.	0.6	1
66	Tolerogenic insulin peptide therapy precipitates type 1 diabetes. Journal of Experimental Medicine, 2017, 214, 2153-2156.	8.5	13
67	Protective Role of Complement C3 Against Cytokine-Mediated β-Cell Apoptosis. Endocrinology, 2017, 158, 2503-2521.	2.8	32
68	JNK Activation of BIM Promotes Hepatic Oxidative Stress, Steatosis, and Insulin Resistance in Obesity. Diabetes, 2017, 66, 2973-2986.	0.6	21
69	A nanobody-based tracer targeting DPP6 for non-invasive imaging of human pancreatic endocrine cells. Scientific Reports, 2017, 7, 15130.	3.3	41
70	Pancreatic β-cell protection from inflammatory stress by the endoplasmic reticulum proteins thrombospondin 1 and mesencephalic astrocyte-derived neutrotrophic factor (MANF). Journal of Biological Chemistry, 2017, 292, 14977-14988.	3.4	41
71	MCL-1 Is a Key Antiapoptotic Protein in Human and Rodent Pancreatic Î ² -Cells. Diabetes, 2017, 66, 2446-2458.	0.6	19
72	MicroRNAs miR-23a-3p, miR-23b-3p, and miR-149-5p Regulate the Expression of Proapoptotic BH3-Only Proteins DP5 and PUMA in Human Pancreatic Î ² -Cells. Diabetes, 2017, 66, 100-112.	0.6	87

#	Article	lF	CITATIONS
73	MECHANISMS IN ENDOCRINOLOGY: Alternative splicing: the new frontier in diabetes research. European Journal of Endocrinology, 2016, 174, R225-R238.	3.7	50
74	Ubiquitin D Regulates IRE1α/c-Jun N-terminal Kinase (JNK) Protein-dependent Apoptosis in Pancreatic Beta Cells. Journal of Biological Chemistry, 2016, 291, 12040-12056.	3.4	44
75	Viral infections in type 1 diabetes mellitus — why the β cells?. Nature Reviews Endocrinology, 2016, 12, 263-273.	9.6	232
76	ER stress and the decline and fall of pancreatic beta cells in type 1 diabetes. Upsala Journal of Medical Sciences, 2016, 121, 133-139.	0.9	77
77	Loss of <i>Mbd2</i> Protects Mice Against High-Fat Diet–Induced Obesity and Insulin Resistance by Regulating the Homeostasis of Energy Storage and Expenditure. Diabetes, 2016, 65, 3384-3395.	0.6	34
78	The lipid sensor GPR120 promotes brown fat activation and FGF21 release from adipocytes. Nature Communications, 2016, 7, 13479.	12.8	180
79	The non-canonical NF-κB pathway is induced by cytokines in pancreatic beta cells and contributes to cell death and proinflammatory responses in vitro. Diabetologia, 2016, 59, 512-521.	6.3	42
80	Genome-wide hydroxymethylcytosine pattern changes in response to oxidative stress. Scientific Reports, 2015, 5, 12714.	3.3	48
81	Differential cell autonomous responses determine the outcome of coxsackievirus infections in murine pancreatic \hat{I}_{\pm} and \hat{I}^2 cells. ELife, 2015, 4, e06990.	6.0	53
82	Pancreatic Beta Cell Survival and Signaling Pathways: Effects of Type 1 Diabetes-Associated Genetic Variants. Methods in Molecular Biology, 2015, 1433, 21-54.	0.9	18
83	A Missense Mutation in <i>PPP1R15B</i> Causes a Syndrome Including Diabetes, Short Stature, and Microcephaly. Diabetes, 2015, 64, 3951-3962.	0.6	71
84	Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia, 2015, 58, 2307-2316.	6.3	181
85	Pancreatic α Cells are Resistant to Metabolic Stress-induced Apoptosis in Type 2 Diabetes. EBioMedicine, 2015, 2, 378-385.	6.1	80
86	<i>TYK2</i> , a Candidate Gene for Type 1 Diabetes, Modulates Apoptosis and the Innate Immune Response in Human Pancreatic β-Cells. Diabetes, 2015, 64, 3808-3817.	0.6	98
87	Mast cells infiltrate pancreatic islets in human type 1 diabetes. Diabetologia, 2015, 58, 2554-2562.	6.3	46
88	Citrullinated Glucose-Regulated Protein 78 Is an Autoantigen in Type 1 Diabetes. Diabetes, 2015, 64, 573-586.	0.6	136
89	<i>CTSH</i> regulates Î ² -cell function and disease progression in newly diagnosed type 1 diabetes patients. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10305-10310.	7.1	81
90	A Combined "Omics―Approach Identifies N-Myc Interactor as a Novel Cytokine-induced Regulator of IRE1α Protein and c-Jun N-terminal Kinase in Pancreatic Beta Cells. Journal of Biological Chemistry, 2014, 289, 20677-20693.	3.4	34

#	Article	IF	CITATIONS
91	<i>BACH2</i> , a Candidate Risk Gene for Type 1 Diabetes, Regulates Apoptosis in Pancreatic β-Cells via JNK1 Modulation and Crosstalk With the Candidate Gene <i>PTPN2</i> . Diabetes, 2014, 63, 2516-2527.	0.6	92
92	Nova1 is a master regulator of alternative splicing in pancreatic beta cells. Nucleic Acids Research, 2014, 42, 11818-11830.	14.5	71
93	Temporal profiling of cytokine-induced genes in pancreatic β-cells by meta-analysis and network inference. Genomics, 2014, 103, 264-275.	2.9	52
94	IL-17A increases the expression of proinflammatory chemokines in human pancreatic islets. Diabetologia, 2014, 57, 502-511.	6.3	47
95	RNA Sequencing Identifies Dysregulation of the Human Pancreatic Islet Transcriptome by the Saturated Fatty Acid Palmitate. Diabetes, 2014, 63, 1978-1993.	0.6	226
96	MBD2 regulates TH17 differentiation and experimental autoimmune encephalomyelitis by controlling the homeostasis of T-bet/Hlx axis. Journal of Autoimmunity, 2014, 53, 95-104.	6.5	39
97	JunB protects β-cells from lipotoxicity via the XBP1–AKT pathway. Cell Death and Differentiation, 2014, 21, 1313-1324.	11.2	37
98	Beta cell imaging – a key tool in optimized diabetes prevention and treatment. Trends in Endocrinology and Metabolism, 2014, 25, 375-377.	7.1	38
99	Type 2 diabetes mellitus—an autoimmune disease?. Nature Reviews Endocrinology, 2013, 9, 750-755.	9.6	93
100	Restoration of the Unfolded Protein Response in Pancreatic Î ² Cells Protects Mice Against Type 1 Diabetes. Science Translational Medicine, 2013, 5, 211ra156.	12.4	254
101	Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and <i>î²</i> â€cell apoptosis. Diabetes, Obesity and Metabolism, 2013, 15, 71-81.	4.4	124
102	Signalling danger: endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. Diabetologia, 2013, 56, 234-241.	6.3	172
103	GLIS3, a Susceptibility Gene for Type 1 and Type 2 Diabetes, Modulates Pancreatic Beta Cell Apoptosis via Regulation of a Splice Variant of the BH3-Only Protein Bim. PLoS Genetics, 2013, 9, e1003532.	3.5	151
104	Pancreatic Î ² -cells activate a JunB/ATF3-dependent survival pathway during inflammation. Oncogene, 2012, 31, 1723-1732.	5.9	38
105	On the Immense Variety and Complexity of Circumstances Conditioning Pancreatic Î ² -Cell Apoptosis in Type 1 Diabetes. Diabetes, 2012, 61, 1661-1663.	0.6	21
106	USP18 is a key regulator of the interferon-driven gene network modulating pancreatic beta cell inflammation and apoptosis. Cell Death and Disease, 2012, 3, e419-e419.	6.3	63
107	Death Protein 5 and p53-Upregulated Modulator of Apoptosis Mediate the Endoplasmic Reticulum Stress–Mitochondrial Dialog Triggering Lipotoxic Rodent and Human β-Cell Apoptosis. Diabetes, 2012, 61, 2763-2775.	0.6	118
108	Expression of endoplasmic reticulum stress markers in the islets of patients with type 1 diabetes. Diabetologia, 2012, 55, 2417-2420.	6.3	195

#	Article	IF	CITATIONS
109	C/EBP homologous protein contributes to cytokine-induced pro-inflammatory responses and apoptosis in Î ² -cells. Cell Death and Differentiation, 2012, 19, 1836-1846.	11.2	114
110	The Human Pancreatic Islet Transcriptome: Expression of Candidate Genes for Type 1 Diabetes and the Impact of Pro-Inflammatory Cytokines. PLoS Genetics, 2012, 8, e1002552.	3.5	398
111	Mining Genes in Type 2 Diabetic Islets and Finding Gold. Cell Metabolism, 2012, 16, 555-557.	16.2	4
112	Resistance to type 2 diabetes mellitus: a matter of hormesis?. Nature Reviews Endocrinology, 2012, 8, 183-192.	9.6	68
113	Obstacles on the way to the clinical visualisation of beta cells: looking for the Aeneas of molecular imaging to navigate between Scylla and Charybdis. Diabetologia, 2012, 55, 1247-1257.	6.3	53
114	Use of RNA Interference to Investigate Cytokine Signal Transduction in Pancreatic Beta Cells. Methods in Molecular Biology, 2012, 820, 179-194.	0.9	33
115	Mcl-1 downregulation by pro-inflammatory cytokines and palmitate is an early event contributing to β-cell apoptosis. Cell Death and Differentiation, 2011, 18, 328-337.	11.2	107
116	Bcl-2 proteins in diabetes: mitochondrial pathways of β-cell death and dysfunction. Trends in Cell Biology, 2011, 21, 424-431.	7.9	175
117	Huntingtin-interacting protein 14 is a type 1 diabetes candidate protein regulating insulin secretion and β-cell apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E681-8.	7.1	55
118	STAT1 Is a Master Regulator of Pancreatic β-Cell Apoptosis and Islet Inflammation. Journal of Biological Chemistry, 2011, 286, 929-941.	3.4	144
119	Exposure to the Viral By-Product dsRNA or Coxsackievirus B5 Triggers Pancreatic Beta Cell Apoptosis via a Bim / Mcl-1 Imbalance. PLoS Pathogens, 2011, 7, e1002267.	4.7	52
120	Sustained production of spliced X-box binding protein 1 (XBP1) induces pancreatic beta cell dysfunction and apoptosis. Diabetologia, 2010, 53, 1120-1130.	6.3	103
121	Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia, 2010, 53, 1395-1405.	6.3	200
122	A genomic-based approach identifies FXYD domain containing ion transport regulator 2 (FXYD2)γa as a pancreatic beta cell-specific biomarker. Diabetologia, 2010, 53, 1372-1383.	6.3	35
123	Cytokines Interleukin-1β and Tumor Necrosis Factor-α Regulate Different Transcriptional and Alternative Splicing Networks in Primary β-Cells. Diabetes, 2010, 59, 358-374.	0.6	134
124	Enhanced Signaling Downstream of Ribonucleic Acid-Activated Protein Kinase-Like Endoplasmic Reticulum Kinase Potentiates Lipotoxic Endoplasmic Reticulum Stress in Human Islets. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1442-1449.	3.6	52
125	p53 Up-regulated Modulator of Apoptosis (PUMA) Activation Contributes to Pancreatic β-Cell Apoptosis Induced by Proinflammatory Cytokines and Endoplasmic Reticulum Stress. Journal of Biological Chemistry, 2010, 285, 19910-19920.	3.4	108
126	ER Stress in Pancreatic Î ² Cells: The Thin Red Line Between Adaptation and Failure. Science Signaling, 2010, 3, pe7.	3.6	138

#	Article	IF	CITATIONS
127	Novel Insights into the Global Proteome Responses of Insulin-Producing INS-1E Cells To Different Degrees of Endoplasmic Reticulum Stress. Journal of Proteome Research, 2010, 9, 5142-5152.	3.7	22
128	Glucagon-Like Peptide-1 Agonists Protect Pancreatic β-Cells From Lipotoxic Endoplasmic Reticulum Stress Through Upregulation of BiP and JunB. Diabetes, 2009, 58, 2851-2862.	0.6	202
129	PTPN2, a Candidate Gene for Type 1 Diabetes, Modulates Interferon-γ–Induced Pancreatic β-Cell Apoptosis. Diabetes, 2009, 58, 1283-1291.	0.6	152
130	Interferon regulatory factor-1 is a key transcription factor in murine beta cells under immune attack. Diabetologia, 2009, 52, 2374-2384.	6.3	24
131	Signaling by IL-1β+IFN-γ and ER stress converge on DP5/Hrk activation: a novel mechanism for pancreatic β-cell apoptosis. Cell Death and Differentiation, 2009, 16, 1539-1550.	11.2	143
132	The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nature Reviews Endocrinology, 2009, 5, 219-226.	9.6	847
133	The Role for Endoplasmic Reticulum Stress in Diabetes Mellitus. Endocrine Reviews, 2008, 29, 42-61.	20.1	990
134	Initiation and execution of lipotoxic ER stress in pancreatic Î ² -cells. Journal of Cell Science, 2008, 121, 2308-2318.	2.0	512
135	Use of a systems biology approach to understand pancreatic β-cell death in TypeÂ1 diabetes. Biochemical Society Transactions, 2008, 36, 321-327.	3.4	42
136	JunB Inhibits ER Stress and Apoptosis in Pancreatic Beta Cells. PLoS ONE, 2008, 3, e3030.	2.5	52
137	Selective Inhibition of Eukaryotic Translation Initiation Factor 2α Dephosphorylation Potentiates Fatty Acid-induced Endoplasmic Reticulum Stress and Causes Pancreatic β-Cell Dysfunction and Apoptosis. Journal of Biological Chemistry, 2007, 282, 3989-3997.	3.4	266
138	Global profiling of genes modified by endoplasmic reticulum stress in pancreatic beta cells reveals the early degradation of insulin mRNAs. Diabetologia, 2007, 50, 1006-1014.	6.3	109
139	The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients. Diabetologia, 2007, 50, 2486-2494.	6.3	361
140	Conditional and specific NF-ÂB blockade protects pancreatic beta cells from diabetogenic agents. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5072-5077.	7.1	231
141	Mechanisms of Pancreatic Â-Cell Death in Type 1 and Type 2 Diabetes: Many Differences, Few Similarities. Diabetes, 2005, 54, S97-S107.	0.6	1,296
142	Cytokines Downregulate the Sarcoendoplasmic Reticulum Pump Ca2+ ATPase 2b and Deplete Endoplasmic Reticulum Ca2+, Leading to Induction of Endoplasmic Reticulum Stress in Pancreatic Â-Cells. Diabetes, 2005, 54, 452-461.	0.6	471
143	Toll-like Receptor 3 and STAT-1 Contribute to Double-stranded RNA+ Interferon-γ-induced Apoptosis in Primary Pancreatic β-Cells. Journal of Biological Chemistry, 2005, 280, 33984-33991.	3.4	140
144	Use of Microarray Analysis to Unveil Transcription Factor and Gene Networks Contributing to Î ² Cell Dysfunction and Apoptosis. Annals of the New York Academy of Sciences, 2003, 1005, 55-74.	3.8	51

#	Article	IF	CITATIONS
145	IL-1Î ² and IFN-Î ³ induce the expression of diverse chemokines and IL-15 in human and rat pancreatic islet cells, and in islets from pre-diabetic NOD mice. Diabetologia, 2003, 46, 255-266.	6.3	184
146	Discovery of Gene Networks Regulating Cytokine-Induced Dysfunction and Apoptosis in Insulin-Producing INS-1 Cells. Diabetes, 2003, 52, 2701-2719.	0.6	207
147	Inverse Relationship Between Cytotoxicity of Free Fatty Acids in Pancreatic Islet Cells and Cellular Triglyceride Accumulation. Diabetes, 2001, 50, 1771-1777.	0.6	509
148	Monocyte chemoattractant protein-1 is expressed in pancreatic islets from prediabetic NOD mice and in interleukin-1β-exposed human and rat islet cells. Diabetologia, 2001, 44, 325-332.	6.3	144
149	A choice of death - the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia, 2001, 44, 2115-2133.	6.3	782
150	Beta-cell apoptosis and defense mechanisms: lessons from type 1 diabetes. Diabetes, 2001, 50, S64-S69.	0.6	157
151	A Comprehensive Analysis of Cytokine-induced and Nuclear Factor-κB-dependent Genes in Primary Rat Pancreatic β-Cells. Journal of Biological Chemistry, 2001, 276, 48879-48886.	3.4	264
152	Human Islets in Mixed Islet Grafts Protect Mouse Pancreatic βâ€Cells from Alloxan Toxicity. Basic and Clinical Pharmacology and Toxicology, 1999, 85, 269-275.	0.0	6
153	Exposure of human islets to cytokines can result in disproportionately elevated proinsulin release. Journal of Clinical Investigation, 1999, 104, 67-72.	8.2	96
154	Intercellular Differences in Interleukin 1β-Induced Suppression of Insulin Synthesis and Stimulation of Noninsulin Protein Synthesis by Rat Pancreatic β-Cells*. Endocrinology, 1998, 139, 1540-1545.	2.8	39
155	Cytokines activate the nuclear factor κB (NF-κB) and induce nitric oxide production in human pancreatic islets. FEBS Letters, 1996, 385, 4-6.	2.8	98
156	Sensitivity of human pancreatic islets to peroxynitrite-induced cell dysfunction and death. FEBS Letters, 1996, 394, 300-306.	2.8	95
157	Beta-Cell Defence and Repair Mechanisms in Human Pancreatic Islets. Hormone and Metabolic Research, 1996, 28, 302-305.	1.5	28
158	Human pancreatic beta-cell deoxyribonucleic acid-synthesis in islet grafts decreases with increasing organ donor age but increases in response to glucose stimulation in vitro. Endocrinology, 1996, 137, 5694-5699.	2.8	18
159	Cycad toxin-induced damage of rodent and human pancreatic β-cells. Biochemical Pharmacology, 1995, 50, 355-365.	4.4	22
160	Rapid deposition of amyloid in human islets transplanted into nude mice. Diabetologia, 1995, 38, 543-549.	6.3	6
161	Expression of the citrulline-nitric oxide cycle in rodent and human pancreatic beta-cells: induction of argininosuccinate synthetase by cytokines. Endocrinology, 1995, 136, 3200-3206.	2.8	23
162	Protective Action of Succinic Acid Monomethyl Ester Against the Impairment of Glucose-Stimulated Insulin Release Caused by Glucopenia or Starvation: Metabolic Determinants. Biochemical Medicine and Metabolic Biology, 1994, 53, 34-45.	0.7	9

#	Article	IF	CITATIONS
163	Succinic acid monomethyl ester protects rat pancreatic islet secretory potential against interleukin-1β (IL-1β) without affecting glutamate decarboxylase expression or nitric oxide production. FEBS Letters, 1994, 337, 298-302.	2.8	25
164	Nicotinamide Decreases Nitric Oxide Production and Partially Protects Human Pancreatic Islets Against the Suppressive Effects of Combinations of Cytokines. Autoimmunity, 1994, 19, 193-198.	2.6	31
165	Role of cytokines in regulation of pancreatic B-cell function. Biochemical Society Transactions, 1994, 22, 26-30.	3.4	18
166	Major species differences between humans and rodents in the susceptibility to pancreatic beta-cell injury Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9253-9256.	7.1	249
167	Cytokines suppress human islet function irrespective of their effects on nitric oxide generation Journal of Clinical Investigation, 1994, 93, 1968-1974.	8.2	278
168	The inducible form of nitric oxide synthase (iNOS) in insulin-producing cells. Diabète & Métabolisme, 1994, 20, 116-22.	0.3	12
169	Irreversible loss of normal beta-cell regulation by glucose in neonatally streptozotocin diabetic rats. Diabetologia, 1994, 37, 351-357.	6.3	2
170	Interleukin-1 -induced expression of nitric oxide synthase in insulin-producing cells is preceded by c-fosinduction and depends on gene transcription and protein synthesis. FEBS Letters, 1993, 317, 62-66.	2.8	68
171	Genotoxic Agents Increase Expression of Growth Arrest and DNA Damage-Inducible Genes gadd 153 and gadd 45 in Rat Pancreatic Islets. Diabetes, 1993, 42, 738-745.	0.6	46
172	Repair of Pancreatic β-cells: A Relevant Phenomenon in Early IDDM?. Diabetes, 1993, 42, 1383-1391.	0.6	58
173	Predominance of stimulatory effects of interleukin-1 beta on isolated human pancreatic islets Journal of Clinical Endocrinology and Metabolism, 1993, 76, 399-403.	3.6	51
174	Nicotinamide and dexamethasone inhibit interleukin-1-induced nitric oxide production by RINm5F cells without decreasing messenger ribonucleic acid expression for nitric oxide synthase. Endocrinology, 1993, 133, 1739-1743.	2.8	24
175	Role of Receptor Binding and Gene Transcription for Both of Stimulatory and Inhibitory Effects of Interleukin-1 In Pancreatic Î ² -Cells. Autoimmunity, 1992, 12, 127-133.	2.6	18
176	Interleukin-1Î ² induces the expression of an isoform of nitric oxide synthase in insulin-producing cells, which is similar to that observed in activated macrophages. FEBS Letters, 1992, 308, 249-252.	2.8	106
177	Prolonged exposure of human pancreatic islets to high glucose concentrations in vitro impairs the beta-cell function Journal of Clinical Investigation, 1992, 90, 1263-1268.	8.2	286
178	Interleukin-1β Induces an Early Decrease in Insulin Release, (Pro)Insulin Biosynthesis and Insulin Mrna in Mouse Pancreatic Islets by a Mechanism Dependent on Gene Transcription and Protein Synthesis. Autoimmunity, 1991, 10, 107-113.	2.6	36
179	Prolonged exposure of pancreatic islets isolated from ?pre-diabetic? non-obese diabetic mice to a high glucose concentration does not impair Beta-cell function. Diabetologia, 1991, 34, 6-11.	6.3	20
180	Biochemical and Molecular Actions of Interleukin-1 on Pancreatic Î ² -Cells. Autoimmunity, 1991, 10, 241-253.	2.6	79

#	Article	IF	CITATIONS
181	Reversal of beta-cell suppression in vitro in pancreatic islets isolated from nonobese diabetic mice during the phase preceding insulin-dependent diabetes mellitus Journal of Clinical Investigation, 1990, 85, 1944-1950.	8.2	70
182	Interleukin-1β Depletes Insulin Messenger Ribonucleic Acid and Increases the Heat Shock Protein hsp70 in Mouse Pancreatic Islets Without Impairing the Glucose Metabolism*. Endocrinology, 1990, 127, 2290-2297.	2.8	71
183	Sustained exposure of toxically damaged mouse pancreatic islets to high glucose does not increase β-cell dysfunction. Journal of Endocrinology, 1989, 123, 47-51.	2.6	15
184	Function and Metabolism of Pancreatic βâ€Cells Maintained in Culture Following Experimentally Induced Damage. Basic and Clinical Pharmacology and Toxicology, 1989, 65, 163-168.	0.0	18
185	Human interleukin-1? induced stimulation of insulin release from rat pancreatic islets is accompanied by an increase in mitochondrial oxidative events. Diabetologia, 1989, 32, 769-73.	6.3	21
186	Functional Restoration of Cultured Mouse Pancreatic Islets after <i>in Vitro</i> Exposure to Alloxan. Basic and Clinical Pharmacology and Toxicology, 1988, 63, 396-399.	0.0	16
187	Culture of mouse pancreatic islets in different glucose concentrations modifies B cell sensitivity to streptozotocin. Diabetologia, 1988, 31, 168-174.	6.3	53
188	Functional Characteristics of Rat Pancreatic Islets Maintained in Culture After Exposure to Human Interleukin 1. Diabetes, 1988, 37, 916-919.	0.6	66
189	The Partial Protective Effect of Branched Chain Amino Acids against Streptozotocinâ€Induced Cytotoxicity to Mouse Pancreatic Islets <i>in Vitro</i> . Basic and Clinical Pharmacology and Toxicology, 1987, 61, 320-324.	0.0	6